2(x-1)+3=0
Giải giúp mình với
Giải giúp mình với
(x+1)×(x-2)<0
(x-2)×(x+2/3)>0
\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}}\) (loại)
Vậy \(-1< x< 2\)
\(\left(x-2\right)\left(\frac{x+2}{3}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\\frac{x+2}{3}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\\frac{x+2}{3}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -2\end{cases}}\)
Đến đây bạn tự xét rồi Vậy nha
\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{cases}\Rightarrow-1< x< 2\left(KTM\right)}\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\Rightarrow x=0;1}\)
Bạn nào biết giải giúp mình với
\(\sqrt{x+5}+\sqrt{3-x}-2\left(\sqrt{15-2x-x^2}+1\right)=0\)
ĐKXĐ: \(-5\le x\le3\)
Đặt \(\sqrt{x+5}+\sqrt{3-x}=t>0\Rightarrow t^2=8+2\sqrt{-x^2-2x+15}\)
\(\Rightarrow-2\sqrt{-x^2-2x+15}=8-t^2\) (1)
Pt trở thành:
\(t+8-t^2-2=0\Leftrightarrow-t^2+t+6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(loại\right)\end{matrix}\right.\)
Thế vào (1): \(-2\sqrt{-x^2-2x+15}=-1\)
\(\Leftrightarrow\sqrt{-x^2-2x+15}=\dfrac{1}{2}\)
\(\Leftrightarrow-x^2-2x+15=\dfrac{1}{4}\)
\(\Leftrightarrow...\)
Ai giải giúp mình với!!
Tìm x.biết (X+1).(x+2).(x+3).(x+5).(x+7)+15=0
: 1/ (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được.
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10).
Lưu ý: phương pháp này có tên là "Đặt ẩn phụ".
2/ x^7 - x² - 1 = x^7 - x² - 1 + x - x = (x^7 - x) + (-x² + x - 1)
= x(x^6 - 1) - (x² - x + 1) = x(x³ - 1)(x³ + 1) - (x² - x + 1)
= (x^4 - x)(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ (x^4 - x)(x + 1) - 1 ]
= (x² - x + 1).(x^5 + x^4 - x² - x - 1).
3/ x^4 + 4y^4 = x^4 + 4y^4 + 4x²y² - 4x²y²
= (x^4 + 4x²y² + 4y^4) - (2xy)²
= (x² + 2y²)² - (2xy)² = [ (x² + 2y²) + (2xy) ].[ (x² + 2y²) - (2xy) ]
= (x² + 2xy + 2y²).(x² - 2xy + 2y²)
4/ x^5 + x + 1 = x^5 + x + 1 + x² - x²
= (x^5 - x²) + (x² + x + 1) = x²(x³ - 1) + (x² + x + 1)
= x²(x - 1)(x² + x + 1) + (x² + x + 1) = (x² + x + 1).[ x²(x - 1) + 1 ]
= (x² + x + 1).(x³ - x² + 1).
5/ x^5 + x - 1 = x^5 + x - 1 + x² - x² = (x^5 + x²) + (-x² + x - 1)
= x²(x³ + 1) - (x² + x - 1) = x²(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ x²(x + 1) - 1 ] = (x² - x + 1).(x³ + x² - 1).
6/ (x² + y² - z²)² - 4x²y² = (x² + y² - z²)² - (2xy)²
= [ (x² + y² - z²) - 2xy ].[ (x² + y² - z²) + 2xy ]
= [ x² + y² - z² - 2xy ].[ x² + y² - z² + 2xy ]
= [ (x² - 2xy + y²) - z² ].[ (x² + 2xy + y²) - z² ]
= [ (x - y)² - z² ].[ (x + y)² - z² ] = (x-y+z)(x-y-z)(x+y+z)(x+y-z).
Mong bạn sẽ hiểu
\(x^4+x^3+x^2+x+1=0\)
Giải nhanh giúp mình với nha.Cảm ơn nhiều. Mình tích cho.
\(x^5+x^4+x^3+x^2+x+1=0\)
\(\Rightarrow x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^4+x^2+1\right)=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Bài 1:giải các phương trình sau:
a) (x-3).(x+7)=0 b) (x-2)^2+(x-2).(x-3)=0 c)x^2-5x+6=0
Bài 2:giải các phương trình chứa ẩn ở mẫu sau:
a)x/x+1-1=3/2x b)4x/x-2-7/x=4
Bài 3:giải phương trình sau
a)2x^2-5x-7=0 b)1/x^2-4+2x/x-2=2x/x+2
giúp mình với,mình đang cần gấp
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
Bài 2.
a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)
ĐKXĐ : x khác -1
<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)
<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)
=> 3x( x + 1 ) = -2
<=> 3x2 + 3x + 2 = 0
Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x
=> phương trình vô nghiệm
b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)
ĐKXĐ : x khác 0 ; x khác 2
<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)
=> 4x2 - 7x + 14 = 4x2 - 8x
<=> 4x2 - 7x - 4x2 + 8x = -14
<=> x = -14 ( tm )
Vậy phương trình có nghiệm x = -14
Câu 1: Giải các phương trình sau:
a) 3x-2(x-3)=0
b) (x+1) (2x-3) = ( 2x -1) (x +5)
c) 2x/ x-1 -x/x+1 =1
d) (2x +3) (3x-5)=0
e) x-2/x+2-3/x-2 = 2(x-11)/ x2
giúp mình với ạ huhu\(^{ }\)
\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)
\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Giải và biện luận (m^2 +1)x^2 -2(m+1)x + 1 >0. Giúp mình với mình cảm ơn !!!
giải phương trình x^2 -(m^2 -3m)x+m^3=0 làm ơn giải giúp mình với
|x|+|2.x-3|=0
Giải giúp mình với ạ. Mình cảm ơn ạ
| x | + | 2x - 3 | = 0 (1)
Ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|2x-3\right|\ge0\end{cases}}\forall x\)
\(\Rightarrow\left|x\right|+\left|2x-3\right|\ge0\forall x\) (2)
Từ (1) và (2) => (1) \(\Leftrightarrow\) \(\hept{\begin{cases}\left|x\right|=0\\\left|2x-3\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
@@ Học tốt
!!! K chắc