Chứng minh rằng : ( 4k + 2 ).( 7k + 58 ) chia hết cho 2
Chứng minh rằng 9 -(1 +4k)^2 chia hết cho 8 với mọi số nguyên Giúp mik vs
\(=\left(9-1-4k\right)\left(9+1+4k\right)\)
\(=\left(8-4k\right)\left(4k+10\right)\)
\(=8\left(2-k\right)\left(2k+5\right)⋮8\)
chứng minh rằng
k là số mũ
10k +8k + 6k - 9k + 7k + 5k ko chia hết cho 2
b; 2017k +2018k +2019+ có chia hết cho 2
c; 2031 mũ 1111 - 2017 mũ 2020 có chia hết cho 10
Chứng minh rằng A = 2 + 2 ^ 2 + 2 ^ 3 +2 ^4 +.........+2 ^ 58 +2 ^ 59 +2 ^60
a) Chia hết cho 3
b) Chia hết cho 7
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
Chứng minh 4k(k+3) chia hết cho 2
mìh nhầm
k(k+3) chia hết cho 2 cần cm gấp
chứng minh rằng
a/ 1994.1995.1996 chia hết cho 24
b/ 4k(k+1)+8(k+1)+8 chia hết cho 8
1995 chia hết cho 3 (1)
1994 chia hết cho 2 (2)
1996 chia hết cho 4 (3)
Từ (1) ; (2) ; (3) => 1994.1995.1996 chia hết cho 3.2.4 = 24
Cho E=1 + 4 + 4 mũ 2 + 4 mũ 3 +....+4 mũ 58 + 4 mũ 59.Hãy chứng minh rằng E chia hết cho 5 và E chia hết cho 21
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
Chứng minh rằng:
A=1+4+4^2+4^3+4^4+.........+4^58 Chia hết cho 21
gộp 1 tổng 3 số rồi làm nha mình ko chỉ thêm đâu
Chứng minh rằng D : 1+4+4^2+4^3+...+4^58 +4^59 \chia hết cho 21
Giúp mình với cắn bạn ơi =))
D= 1+4+42+43+...+458 +459 ⋮ 21
D= (1+4+42)+(43+44+45)+...(457+458+459)
D= (1+4+42)+43.(1+4+42)+...+457.(1+4+42)
D= 21+43.21+....+457.21 ⋮ 21
=>D= 1+4+42+43+...+458 +459 ⋮ 21
Chứng minh rằng tổng \(A=7^1+7^2+7^3+7^4+....+7^{4k}\); \(k\in N\) chia hết cho 100.
\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)
\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)
\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)
\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)
=> đpcm