CMR: A= 2+2^2+2^3+.....+2^59+2^60. chia hết cho 42. giúp mk nha ^.^. cảm ơn
Chứng minh rằng 2 + 2^2 + 2^3 + .... + 2^59 + 2^60 + 2^2021 chia hết cho 5
Giải chi tiết giúp mk nhé. Mk cảm ơn!
Cho A= 2+22+23+...+260.
a)CMR: rằng A chia hết cho 3, cho 7 và 15
b)CMR: rằng A chia hết cho 21,105
Các bn giúp mk với ( nhanh nha mk đang cần gấp, các bn có thể gửi trước 9 giờ ko)
Ghi rõ ràng giúp mk nhé .Thank you
Cho tổng: A=1+4+4^2+4^3+...+4^23
a) CMR A chia hết cho 3
b) CMR A chia hết cho 7
c) CMR A chia hết cho 17
Mấy bạn giúp mình nha! Cảm ơn các bạn nhiều !
HÃY CHỨNG MINH RẰNG
A=2+2 mũ 2+2 mũ 3 + 2 mũ 4+...+2 mũ 100 chia hết cho 31
CÁC BN GIÚP MK NHA AI ĐÚNG MK CHO 3 TK
CẢM ƠN TRƯỚC NHA CÁC THIÊN TÀI TOÁN HK GIÚP MK
Co Gai De Thuong
A = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2 x ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 x ( 1 + 2 + 22 + 23 + 24 )
= 2 x 31 + ... + 296 x 31
= 31 ( 2 + ... + 296 )
Vậy A chia hết cho 31
A = 2 + 22 + 23 + 24 + 25 + .... + 296 + 297 + 298 + 299 + 2100
A = [2 + 22 + 23 + 24 + 25] + ... + 295[2 + 22 + 23 + 24 + 25]
A = 62 + ... + 295.62
A = 2.31 + .... + 295.2.31
A = 31.2.[20 + 25 + ... +295]
=> A \(⋮31\)
Ta có
\(A=2^1+2^2+2^3+...+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4+2^5\right)+....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(A=2\left(1+2+2^2+2^3+2^4\right)+...+\left(1+2+2^2+2^3+2^4\right)\left(2^{96}+2^{96}+2^{96}+2^{96}\right)\)
\(A=\left(1+2^2+2^3+2^4+2^5\right)\left(2+...+2^{96}\right)\)
\(A=31.\left(2+...+2^{96}\right)⋮31\)
1> Cho S = 1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ....... + 59/3^59 - 60/3^60
a) thu gọn S
b) CMR S < 3/16
nhanh nha giúp mk với đang cần gấp
thanks nha
Cho A = 2+22+23+24+...+258+259+260. CMR: a) A chia hết cho 3, b) A chia hết cho 7, c) A chia hết cho 15
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
7+7^2+7^3+7^4+..7^59+7^60 cmr: a chia hết cho 57 mn lm giúp mik vs ạ !!!
= \(\left(7+7^2+7^3\right)+...+\left(7^{58}+7^{59}+7^{60}\right)\)
= \(7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)
= \(57.7+...+57.7^{58}\) \(⋮57\)
\(=7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)
\(=57\cdot\left(1+...+7^{58}\right)⋮57\)
các bạn giúp mình nha: A bằng: 2+22+23+....+259+260 chia hết cho 3;7;15
\(A=2+2^2+2^3+...+2^{59}+2^{60}\)
Có 60 số hạng.
1./ 60 chia hết cho 2 nên A tính được theo cặp 2 số liên tiếp:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)=2\cdot\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
=> A chia hết cho 3.
2./ Tương tự, 60 chia hết cho 3 nên A tính được theo bộ 3 số liên tiếp: và bạn cũng suy ra A chia hết cho 7.
3./ Tương tự, 60 chia hết cho 4 nên A tính được theo bộ 4 số liên tiếp: và bạn cũng suy ra A chia hết cho 15.
1. CMR :
a, cho A= 2+2^2+2^3+....+2^60 chia hết cho 3,7 và 15.
b, cho B= 3+3^3+3^5+.....+3^1991 chia hết cho 13 và 41
giải giúp mk nha mà CMR là chứng minh rằng đấy
a) A= (2+22)+(23+24)+........(259+260)
= 1(2+22) + 22(2+22) + ....... 258(2+22)
= 1.6 + 22.6 +......... 258.6
=6(1+22+.......258)
Vì 6 chia hết cho 3 nên => 6(1+22+........258)
Các câu còn lại cũng tương tự như vậy nha bn!
Thêm: chia hết cho 3
hay A chia hết cho 3
Vào phần vì 6 chia hết........... cho mk nha!