Chứng minh:
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{4n-2}+\frac{1}{4n}+...+\frac{1}{98}+\frac{1}{100}<\frac{1}{50}\)
Chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
M = 512 - 512/2 - .... - 512/2^10
= 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10
= 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2
2M = 2^10 - 2^9 - 2^8 - .... - 1
2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9 + 2^8 + 2^7 +... + 1 + 1/2
M = 2^10 - 2.2^9 + 1/2
M = 2^10 - 2^10 + 1/2
M = 1/2
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow49A=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n}}+..+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=50A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{50}=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(ĐPCM\right)\)
Chứng minh \(\frac{1}{7^2}-\frac{1}{74}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}<\frac{1}{50}\)
CMR:\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{98}-\frac{1}{100}< \frac{1}{50}\)
Chứng minh rằng: \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}<\frac{1}{50}\)???
Bạn Nào giỏi thì giúp mik với nhé? Mik đang cần gấp. thanks.
\(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow7^2.A=\frac{1}{1}-\frac{1}{7^2}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=1-\frac{1}{7^{100}}\)
\(50A=1-\frac{1}{7^{100}}
Chứng minh rằng \(\frac{1}{8^2}-\frac{1}{8^4}+...+\frac{1}{8^{4n-2}}-\frac{1}{8^{4n}}+...+\frac{1}{8^{98}}-\frac{1}{8^{100}}\)
Chứng minh rằng: \(A=\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{4n-2}}-\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}
Chứng minh rằng:
\(A=\frac{1}{3^2}+\frac{1}{3^4}+......+\frac{1}{3^{4n-2}}+\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}<0,1\)
Ta có: 9A=1+1/32+...+1/398
Vậy 10A=(1+1/32+...+1/398) + (1/32+1/34+...+1/3100)
10A=1+2(1/32+1/34+...+1/398)+1/3100
Vậy 10A>1 suy ra A > 0,1 suy ra người ra đề đã đặt sai đề!
sai từ cái đề bài lun
Chứng minh rằng:
A=\(\frac{1}{3^2}+\frac{1}{3^4}+.......+\frac{1}{3^{4n-2}}+\frac{1}{3^{4n}}+....+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)< 0,1
CMR : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^n}+...+\frac{1}{7^{98}}+\frac{1}{7^{100}}< \frac{1}{50}\)
Giải hộ mình nhé
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}+\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)vào A. Ta được:
\(A.\frac{1}{7^2}=\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}+\frac{1}{7^{102}}\)
\(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Ta có: \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right)\frac{49}{50}< \frac{1}{5}^{\left(đpcm\right)}\)