Hệ phương trình
2x 2z 3 0
3 8 0
3x 2 1 0
y
x y z
y z
có nghiệm là:
A. (x;y;z)=(-1;3;2) B. (x;y;z)=(1;-3;2) C. (x;y;z)=(1;-3;-2) D. (x;y;z)=(-1;3;-2)
GIẢI HỘ MÌNH VỚI, CẦN GẤP Ạ
Giải hệ phương trình:
\(\hept{\begin{cases}x+2my-z=1\\2x-my-2z=2\\x-\left(m+4\right)y-z=1\end{cases}}\)
có nghiệm (x;y;z) với m khác 0 và -4/3
Khi hệ phương trình x + 2 m y − z = 1 2 x − m y − 2 z = 2 x − ( m + 4 ) y − z = 1 có nghiệm x ; y ; z với m ≠ 0 m ≠ − 4 3 , giá trị T = 2017 x − 2018 y − 2017 z là:
A. T = - 2017
B. T = 2018
C. T = 2017
D. T = - 2018
Kí hiệu x + 2 m y − z = 1 ( 1 ) 2 x − m y − 2 z = 2 ( 2 ) x − ( m + 4 ) y − z = 1 ( 3 )
Lấy (1) – (3) vế với vế ta được 3 m + 4 y = 0 ⇔ y = 0 ( d o m ≠ 0 ; − 4 3 )
Khi đó x − z = 1 y = 0
Ta có T = 2017 x − 2018 y − 2017 z = 2017 x − z = 2017
Đáp án cần chọn là: C
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
1)Phương trình nào sau đây là pt bậc nhất một ẩn:
a)2x*2-1=0; b)(x+1)(x-1)=9; c)4x+y=18; d)7-2x=0;
2)Bất phương trình nào dưới đây là BPT bậc nhất một ẩn:
a)0x-3<0 b)1+x*3>0 c)-x+1<0
3)BPT 4x-10 > x+2 có nghiệm là:
a)x>4 b)x<4 c)x>-4
4) Cho hai tam giác đồng dạng với nhau theo tỉ số đồng dạng là k. Khi đó tỉ số hai đường cao tương ứng của chúng là:
a)k*2 b)1/k c)k d)1/k*2
`1-D`
Vì `7-2x=0` có dạng của ptr bậc nhất một ẩn `ax+b=0` trong đó `a=-2 \ne 0`
_________________________________________________
`2-C`
Vì `-x+1 < 0` có dạng bất ptr bậc nhất một ẩn `ax+b < 0` và `a=-1 \ne 0`
__________________________________________________
`3-A`
`4x-10 > x+2`
`<=>4x-x > 2+10`
`<=>3x > 12`
`<=>x > 4`
_________________________________________________
`4-C`
Vì tỉ số đồng dạng của `2` hai tam giác đồng dạng bằng tỉ số của `2` đường cao tương ứng của `2` tam giác đồng dạng đó
giải hệ xz^2+x=2z^2: yx^2+y=2x^2: zy^2+z=2y^2
Tìm nghiệm nguyên của hệ phương trình:
\(\hept{\begin{cases}x-y+z=2\\2x^2-xy+x-2z=1\end{cases}}\)
Giải hệ phương trình tìm nghiệm nguyên:
\(\left\{{}\begin{matrix}\left(2-x\right)\left(3x-2z\right)=3-z\\y^3+3y=x^2-3x+2\\z^2+y^2=6z\\z\le3\end{matrix}\right.\)
Giải hệ phương trình tìm nghiệm nguyên:
\(\left\{{}\begin{matrix}\left(2-x\right)\left(3x-2z\right)=3-z\left(1\right)\\y^3+3y=x^2-3x+2\left(2\right)\\z^2+y^2=6z\left(3\right)\\z\le3\left(4\right)\end{matrix}\right.\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)