1phần 2 + 1 phần 6+ 1 phần 12 +1 phần 20 + 1 phần 30
7/48 - ( 1 phần 2 x 2 + 1phần 4x 3 + 1 phần 6x 4 + 1phần 8 x 5 + 1 phần 10 x 6 + 1 phần 12 x 7 + 1 phần 14 x 8 ) : x= 0
7/48 - (1/2 x 2 + 1/6 x 4 + 1/8 x 5 + 1/12 x 7 + 1/14 x 8) : x = 0
7/48 - (1 + 2/3 + 5/8 + 7/12 + 4/7) : x = 0 (đã rút gọn)
7/48 - (336/336 + 224/336 + 210/336 + 196/336 + 192/336) : x = 0 (quy đồng)
7/48 - 193/56 : x = 0
193/56 : x = 0 + 7/48
193/56 : x = 7/48
x = 193/56 : 7/48
x = 1158/49
1 phần 2 + 1 phần 6 + 1 phần 12 + 1 phần 20 + 1 phần 30 + 1 phần 42 + 1 phần 56
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\\ =\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\\ =\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{8}\right)\\ =\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{8}=1-\dfrac{1}{8}=\dfrac{8-1}{8}=\dfrac{7}{8}\)
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
`=`\(1-\dfrac{1}{8}\)
`=`\(\dfrac{7}{8}\)
1phần 6 nhân 8 phần 3 - 1 phần 3
7 phần 12 + 5 phần 6 chia 1 phần 2
Câu 1 = 1/9
Câu 2 = 9/4 hoặc = 2,25
Mk rút gọn hộ bn luôn đấy ! k mk nha !!!!!!!!!
1 phần 2+1 phần 6+1 phần 12+1 phần 20+1 phần 30+1 phần 42+1 phần 56+...+1 phần 756+1 phần 812+1 phần 870
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+...+ \(\dfrac{1}{812}\) + \(\dfrac{1}{870}\)
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{28\times29}\)+ \(\dfrac{1}{29\times30}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+\(\dfrac{1}{28}\)-\(\dfrac{1}{29}\)+ \(\dfrac{1}{29}\) - \(\dfrac{1}{30}\)
A = 1 - \(\dfrac{1}{30}\)
A = \(\dfrac{29}{30}\)
A=1 phần 2+1 phần 6+1 phần 12+1 phần 20+1 phần 30+1 phần 42 là bao nhiêu ?
=1/1x2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7
=1-1/7
=6/7
b = 1 phần 6 + 1 phần 12 + 1 phần 20 + 1 phần 30 + 1 phần 42 + 1 phần 56 + 1 phần 72
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\)
\(B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(B=\dfrac{1}{2}-\dfrac{1}{9}\)
\(B=\dfrac{9}{18}-\dfrac{2}{18}\)
\(B=\dfrac{7}{18}\)
Bài 1: A=1 phần 5 + 1 phần 10 + 1 phần 20 + 1 phần 40 +......+ 1 phần 1280 Tính bằng cách hp lí
Bài 2: B= 1 phần 3 + 1 phần 9 + 1 phần 27 + 1 phần 81 +......+ 1 phần 59049 Tính bằng cách hp lí
Bài 3: Ta có dãy sau: 1 phần 2,1 phần 6,1 phần 12,1 phần 20, 1 phần 30, 1Phần 42.....
a.Tính tổng của 10 số hạng đầu tiên của dãy
b.1 phần 10200 có thuộc số trên ko? Vì sao?
#)Giải :
Bài 1 :
\(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+...+\frac{1}{1280}\)
\(\Rightarrow A\times2=\frac{2}{5}-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+...+\frac{1}{1280}\right)-\frac{1}{1280}\)
\(\Rightarrow A\times2=\frac{2}{5}-A-\frac{1}{1280}\)
\(\Rightarrow A\times2+A=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow A=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow A=\frac{511}{1280}\)
#)Giải :
Bài 2 :
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{59049}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{10}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\)
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}...+\frac{1}{3^9}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{10}}\right)\)
\(2B=1-\frac{1}{3^{10}}\)
\(B=\frac{1-\frac{1}{3^{10}}}{2}\)
Bài 1
a) -8 phần 15 + 13 phần 30 - 5 phần 12
b) 3 phần 2 nhân 7 phần 2 + (-5 phần 6 + 1 phần 10) chia 11 phần 30
c) - 20 phần 21 nhân 22 phần 35 + -20 phần 21 nhân 13 phần 35 + - 22 phần 21
a=-31 phần 60
b=13 phần 4
c=-2
1 phần 2+ 5 phần 6+ 11 phần 12+ 19 phần 20+ 29 phần 30+ 41 phần 42+ 55 phần 56+ 71 phần 72+ 89 phần 90
\(\dfrac{1}{2}+\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{19}{20}+\dfrac{29}{30}+\dfrac{41}{42}+\dfrac{55}{56}+\dfrac{71}{72}+\dfrac{89}{90}=1-\dfrac{1}{2}+1-\dfrac{1}{6}+1-\dfrac{1}{12}+....+1-\dfrac{1}{90}=1+1+...+1-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)=9-\left(\dfrac{1}{1x2}+\dfrac{1}{2x3}+...+\dfrac{1}{9x10}\right)=9-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)=9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)