cho tam giác ABC có góc A=20 độ. Trên tia AC lấy D sao cho AD=BC. Tính góc ADB
cho tam giác ABC có góc A=20 độ. Trên tia AC lấy D sao cho AD=BC. Tính góc ADB
Cho tam giác ABC có góc BAC = 86 độ tia AD nằm giữa hai tia AB và AC sao cho góc BAD = 20 độ , tia AE là tia phân giác của góc DAC ( điểm D , E nằm trên cạnh BC )
a) tính góc DAC và góc DAE
b) biết tổng số đo 3 góc bằng 180 độ . góc ADB = 102 độ . tính góc AED
Bài 1: Cho tam giác ABC đều. Trên tia đối tia BC lấy điểm D, trên tia đối tia CB lấy điểm E sao cho BD=CE=BC
a) C/m: tam giác ACE cân
b) Tính góc DAE
Bài 2: Cho tam giác ABC cân tại A. Trên tia đối tia AC lấy điểm D sao cho AD = AC. C/m tam giác BCD vuông
Bài 3: Cho tam giác ABC cân tại A có góc A= 40 độ. Lấy điểm D khác phía B so với AC thoả mãn góc CAD=60 độ, góc ACD=80 độ. C/m BD vuông góc AC
1,Cho tam giác ABC có AB < AC,AD là phân giác của góc A ( D thuộc BC ).Trên cạnh AC lấy điểm E sao cho AE = AB
a,CM:CD > BD
b,So sánh góc ADB và góc ADC
2,Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm D.Trên tia đối của tia CA lấy điểm E sao cho BD = CE.Nối D với E.Kẻ DH vuông góc với BC ( H thuộc BC ),EK vuông góc với BC ( K thuộc BC ).CM:
a,BH = CK
b,BC < DE
1:
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
b: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
Câu 1:Cho tam giác ABC cân tại A, góc A=120 độ, BC=6 cm. Đường vuông góc với AB tại A cắt BC ở D. Trên tia đối của tia AD lấy K sao cho AD=Ak. Tính BD
Câu 2:Cho tam giác ABC vuông tại A có góc B= 30 độ. Trên tia đối của tia AC lấy D sao cho AD=AC.
a) CM: tam giác ABD= tam giác ABC
b) tam giác BCD là tam giác đều
1)Cho tam giác ABC vuông ở A, có góc C=30 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho HD=HB. Từ C kẻ CE vuông góc với AD. Chứng minh:
a) Tam giác ABD là tam giác đều
b)AH=CE
c) EH song song với AC
2) Cho tam giác ABC có góc B=45 độ, góc C=120 độ. Trên tia đối của tia CB lấy điểm D sao cho CD=2CB. Tính góc ADB
tại sao 2 tam giác bch vàbhd lạ cân vậy bn
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Cho tam giác ABC vuông tại A có ABC = 60°.a) Tính số đo góc BCA.b) Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Chứng minh tam giác ADB = tam giác EDB và DE vuông góc với BC.c) Trên tia BA lấy điểm M sao cho BM = BC. Chứng minh Ba điểm E, D, M thẳng hàng .
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)
\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)
hay \(\widehat{ACB}=30^0\)
Vậy: \(\widehat{ACB}=30^0\)
b) Xét ΔADB và ΔEDB có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔADB=ΔEDB(c-g-c)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
c) Ta có: BE+EC=BC(E nằm giữa B và C)
BA+AM=BM(A nằm giữa B và M)
mà BE=BA(ΔBED=ΔBAD)
và BC=BM(gt)
nên EC=AM
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔDAB=ΔDEB)
AM=EC(cmt)
Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)
nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{ADM}+\widehat{ADE}=180^0\)
\(\Leftrightarrow\widehat{EDM}=180^0\)
hay E,D,M thẳng hàng(đpcm)
Cho tam giác ABC có góc A =90 độ ,AB lớn hơn AC lấy D là 1 điểm trên BC sao cho góc ADB =60 độ .P/g góc B cắt AD ở F .cắt AC ở E C/m tam giác DBA đồng dạng tam giác ABC