Nếu n = 3k+1 (với k là số nguyên dương) thì \(\frac{2^n}{8^k}\) bằng bao nhiêu
Nếu n=3k+1 ( Với k là số nguyên dương ) thi 2n/8k =?
nhanh lên nha mấy chế
\(\frac{2^n}{8^k}=\frac{2^n}{2^{3k}}=\frac{2^{3k+1}}{2^{3k}}=\frac{2^{3k}.2}{2^{3k}}=2\)
Với n = 3k + 1 ( với k là số nguyên dương ) thì 2n / 8k = ?
\(\frac{2^n}{8^k}=\frac{2^{3k+1}}{8^k}=\frac{2^{3k}.2}{8^k}=\frac{\left(2^3\right)^k.2}{8^k}=\frac{8^k.2}{8^k}=2\)
Vậy.....
Violympic vòng 15 à?
\(\frac{2n}{8k}=\frac{2.\left(3k+1\right)}{8k}=\frac{6k+2}{8k}=\frac{2.\left(3k+1\right)}{2.4k}=\frac{3k+1}{4k}\)
Vậy với n=3k+1 thì \(\frac{2n}{8k}=\frac{3k+1}{4k}\)
chứng minh rằng nếu 1+2^n+3^n là số nguyên tố thì n= 3^k với k nguyên dương
Một số nguyên a có dạng 3k + 5 (k nguyên) thì -a có dạng 3m + n (m, n nguyên).
Nếu 0 < hoặc = n <3 thì n = bao nhiêu
mình cũng cần bài này nè. Ai giải giùm mình cho
Hãy xem trong lời giải của bài toán sau đây có bước nào bị sai?
Bài toán: chứng minh rằng với mọi số nguyên dương n, mệnh đề sau đây đúng:
A(n) : “nếu a và b là những số nguyên dương mà max{a,b} = n thì a = b”
Chứng minh :
Bước 1: A(1):”nếu a,b là những số nguyên dương mà max{a,b} = 1 thì a = b”
Mệnh đề A(1) đúng vì max{a,b} = 1 và a,b là những số nguyên dương thì a= b =1.
Bước 2: giả sử A(k) là mệnh đề đúng vơi k≥1
Bước 3: xét max{a,b} = k+1 ⇒max{a-1,b-1} = k+ 1-1 = k
Do a(k) là mệnh đề đúng nên a- 1= b-1 ⇒ a= b⇒ A(k+1) đúng.
Vậy A(n) đúng với mọi n ∈N*
A. Bước 1
B. Bước 2
C. Bước 3
D. Không có bước nào sai
Đáp án là C. Ta có a,b∈N* không suy ra a -1, b -1∈N* . Do vậy không áp dụng được giả thiết quy nạp cho cặp {a -1, b -1}.
Chú ý: nêu bài toán trên đúng thì ta suy ra mọi số tự nhiên đều bằng nhau. Điều này là vô lí.
1 tính giá trị biểu thức
a) Cho các số a1;a2;..được xác định bởi công thức: ak=\(\frac{3k^2+3k+1}{\left(k^2+k\right)^3}\)
với k là số nguyên dương. Tính tổng 1+a1+a2+...+a9
bạn nào giỏi thì giúp với
Câu hỏi của Phạm Hữu Nam - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Một số nguyên a có dạng 3k+5 (k là số nguyên) thì -a có dạng 3m+n (m,n nguyên) nếu 0<hoặc=n<3 thì n =
1 Cho các số a1,a2,...được xác định bởi công thức : \(a_k=\frac{3k^2+3k+1}{\left(k^2+k\right)^3}\) với k là số nguyên dương . Tính tổng 1+a1+a2+...+a9
Ta có:
\(a_k=\frac{3k^2+3k+1}{\left(k^2+k\right)^3}=\frac{k^3+3k^2+3k+1-k^3}{k^3\left(k+1\right)^3}=\frac{\left(k+1\right)^3-k^3}{k^3\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)
=> \(a_1=\frac{1}{1^3}-\frac{1}{2^3}\); \(a_2=\frac{1}{2^3}-\frac{1}{3^3}\); \(a_3=\frac{1}{3^3}-\frac{1}{4^3}\); ....; \(a_9=\frac{1}{9^3}-\frac{1}{10^3}\)
=> \(1+a_1+a_2+...+a_9=1+1-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{3^3}-\frac{1}{4^3}+...+\frac{1}{9^3}-\frac{1}{10^3}\)
\(2-\frac{1}{10^3}=\frac{1999}{1000}\)
Chị quản lí giúp em bài này nữa ạ
1 Cho tam giác ABC cân tại A . Trên cạnh AC lấy điểm D sao cho góc ABD=45 độ - \(\frac{gócBAC}{4}\) VẼ DE // CB(E thuộc AB).Chứng minh
a)Tứ giác BEDC là hình thang cân
b) EB=ED
c) CE là phân giác góc C
Chị Chi ơi cho em hỏi
Tại sao (k2+k)3=k3(k-1)3 ạ
n là số nguyên dương và k là tích của tất cả các số nguyên từ 1 đến n. Nếu k là bội số của 1440 thì giá trị nhỏ nhất có thể có của n là A. 8 B. 12 C. 16 D. 18 E. 24
Lời giải:
$1440=2^5.3^2.5$
Để $k=n!\vdots 1440$ thì $n!\vdots 2^5$; $n!\vdots 3^2; n!\vdots 5$
Để $n!\vdots 3^2; 5$ thì $n\geq 6(1)$
Để $n!\vdots 2^5$. Để ý $2=2^1, 4=2^2, 6=2.3, 8=2^3$. Để $n!\vdots 2^5$ thì $n\geq 8(2)$
Từ $(1); (2)$ suy ra $n\geq 8$. Giá tri nhỏ nhất của $n$ có thể là $8$