so sánh\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)và 20
So sánh: A= \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\) và B= 24
\(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)
\(A< \sqrt{2,25}+\sqrt{6,25}+\sqrt{12,25}+\sqrt{20,25}+\sqrt{30,25}+\sqrt{42,25}=24=B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
So sánh \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{56}+\sqrt{72}+\sqrt{90}+\sqrt{110}\) và 60
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}\)\(=\sqrt{1.2}+\sqrt{2.3}+\sqrt{3.4}+...+\sqrt{10.11}\)
\(< \frac{1+2}{2}+\frac{2+3}{2}+\frac{3+4}{2}+...+\frac{10+11}{2}\)\(=\frac{1}{2}\left[\left(1+2+3+...+10\right)+\left(2+3+4+...+11\right)\right]\)\(=\frac{1}{2}\left(\frac{11.10}{2}+\frac{13.10}{2}\right)=\frac{1}{2}\left(55+65\right)=60\)
Vậy \(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}< 60.\)
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{56}+\sqrt{72}+\sqrt{90}+\sqrt{110}\) < 60 nha.
SO SÁNH \(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\) VÀ 20
\(\sqrt{12}<\sqrt{12,25}=3,5\)
\(\sqrt{20}<\sqrt{20,25}=4,5\)
\(\sqrt{30}<\sqrt{30,25}=5,5\)
\(\sqrt{42}<\sqrt{42,25}=6,5\)
Suy ra:\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)<3,5+4,5+5,5+6,5=20
Vậy biểu thức <20
\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}
So Sánh \(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)
và B=24
A=√2+√6+√12+√20+√30+√42
A= 23.7579
B= 24
vậy => B > A
A=√2+√6+√12+√20+√30+√42
A=23,75790715
Mà B=24
=>A<B
So Sánh \(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)
Và\(B=24\)
1. Không dùng máy tính hãy so sánh: \(A=\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}va20\)
Ta thấy :
\(A=\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}< \sqrt{12,25}+\sqrt{20,25}+\sqrt{30,25}+\sqrt{42,25}=20\)
\(\Rightarrow A< 20\)
Vậy A < 20
~Study well~
#KSJ
So sánh: \(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\) và \(B=24\)
Trả lời cho tôi may mắn cả năm!
So sánh
a) \(\sqrt{37}+\sqrt{83}\) và 15
b) \(\sqrt{48}+\sqrt{80}\) và 16
c) \(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{56}+\sqrt{72}+\sqrt{90}+\sqrt{110}\) và 56
Không dùng mtct, hãy so sánh
A=\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)và 20
B=\(\sqrt{196}-\dfrac{1}{\sqrt{3}}-1\)và c=\(\sqrt{169}+\dfrac{-1}{\sqrt{2}}\)
M=\(\sqrt{61-35}\)vàN=\(\sqrt{61}-\sqrt{35}\)