So sánh :
\(\frac{19}{26}\)và \(\frac{21}{25}\)
a) So sánh \(\frac{33}{131}\) và \(\frac{53}{217}\)
b) Cho B = \(\frac{15}{26}\) + \(\frac{10}{17}\) + \(\frac{8}{21}\). CMR: B < 2
Gấp !!!!!!!!
a) \(\frac{33}{131}>\frac{33}{132}=\frac{1}{4}\); \(\frac{53}{217}< \frac{53}{212}=\frac{1}{4}\)
Từ đó suy ra \(\frac{33}{131}>\frac{53}{217}\)
b) \(B< \frac{15}{17}+\frac{10}{17}+\frac{8}{17}=\frac{15+10+8}{17}=\frac{33}{17}< \frac{34}{17}=2^{\left(đpcm\right)}\)
Sa sánh A và B:
a) A=\(\frac{19^{30}+5}{19^{31}+5}\)và B=\(\frac{19^{31}+5}{19^{32}+5}\)
b)A=\(\frac{2^{18}-3}{2^{20}-3}\)và B=\(\frac{2^{20}-3}{2^{22}-3}\)
Lưu ý: ko tính kết quả chỉ so sánh thôi
Càng rõ càng tốt
Thankyouverymuch
So sánh A và B:
a) A = \(\frac{10^{19}+1}{10^{20}+1}\); B = \(\frac{10^{20}+1}{10^{21}+1}\)
b) A = \(\frac{9^{99}+1}{9^{100}+1}\); B = \(\frac{10^{98}-1}{10^{99}-1}\)
So sánh:
\(\frac{-15}{-17}\)và \(\frac{16}{-19}\)
So sánh qua phân số trung gian
\(\frac{-15}{-17}>0>\frac{16}{-19}\)
Vậy \(\frac{-15}{-17}>\frac{16}{-19}\)
Ta thấy \(\frac{-15}{-17}>0>\frac{16}{-19}\) nên \(\frac{-15}{-17}>\frac{16}{-19}\)
So sánh A và B biết:
A=\(\frac{10^{17}+1}{10^{18}+1}\), B=\(\frac{10^{18}+1}{10^{19}+1}\)
Ta có: \(A=\frac{10^{18}+1}{10^{19}+1}>\frac{10.\left(10^{17}+1\right)}{10.\left(10^{18}+1\right)}=\frac{10^{17}+1}{10^{18}+1}\)
Vậy A < B
So sánh\(\frac{2^{23}+1}{2^{25}+1}\) và \(\frac{2^{25}+1}{2^{27}+1}\)
Ta có:
\(A=\frac{2^{23}+1}{2^{25}+1}\Rightarrow2A=\frac{2^{25}+2}{2^{25}+1}=1+\frac{1}{2^{25}+1}\)
\(B=\frac{2^{25}+1}{2^{27}+1}\Rightarrow2B=\frac{2^{27}+2}{2^{27}+1}=1+\frac{1}{2^{27}+1}\)
\(\frac{1}{2^{25}+1}>\frac{1}{2^{27}+1}\Rightarrow2A>2B\Rightarrow A>B\)
Hông quy đồng mẫu số, hãy so sánh A và B, biết
A= \(\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}\)
B= \(\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)
mình đang cần gấp
Ta có: \(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-9}{10^{2010}}-\frac{9}{10^{2011}}-\frac{10}{10^{2011}}\)
\(=\frac{-9}{10^{2010}}-\frac{9}{10^{1011}}-\frac{1}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-10}{10^{2010}}\)
Ta thấy : \(\frac{10}{10^{2010}}< \frac{19}{10^{2010}}\Rightarrow\frac{-10}{10^{2010}}>\frac{-19}{10^{2010}}\)
\(\Rightarrow\frac{-9}{10^{2011}}+\frac{-10}{10^{2010}}>\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)
Hay \(A>B\)
Vậy ...
So sánh A và B biết:
A=\(\frac{10^{17}+1}{10^{18}+1}\), B=\(\frac{10^{18}+1}{10^{19}+1}\)
Vì \(\frac{10^{18}+1}{10^{19}+1}< 1\Rightarrow B=\frac{10^{18}+1}{10^{19}+1}< \frac{10^{18}+1+9}{10^{19}+1+9}\)
\(\Rightarrow B< \frac{10^{18}+10}{10^{19}+10}\)
\(\Rightarrow B< \frac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)
\(\Rightarrow B< \frac{10^{17}+1}{10^{18}+1}\)
\(\Rightarrow B< A\)
Vậy A > B.
So sánh A và B bằng cách so sánh với 1:
\(A=\frac{2010}{2011}+\frac{2011}{2012}\)và \(B=\frac{2010+2011}{2011+2012}\)
ta có :
\(B=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
ta có : \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
=> \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)
hay A>B