Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai Anh
Xem chi tiết
jin rin
Xem chi tiết
Van Toan
25 tháng 12 2022 lúc 20:04

\(4^0+4^1+4^2+4^3+...+4^{35}\\ 4S=4^1+4^2+4^3+4^4+...+4^{36}\\ 4S-S=\left(4^1+4^2+4^3+4^4+...+4^{36}\right)-\left(4^0+4^1+4^2+4^3+...+4^{35}\right)\\ 3S=4^{36}-1=64^{12}-1\\ Vì64^{12}-1< 64^{12}\\ \Rightarrow3S< 64^{12}\)

Nguyễn Việt Lâm
25 tháng 12 2022 lúc 20:22

Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)

\(S=4^0+4^1+...+4^{34}+4^{35}\)

\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)

\(\Rightarrow4S-S=4^{36}-4^0\)

\(\Rightarrow3S=4^{36}-1< 4^{36}\)

Vậy \(3S< 64^{12}\)

Nguyễn Phú Hoàng Long
Xem chi tiết
nguyen thao
Xem chi tiết
Cuộc đời nở hoa
10 tháng 12 2017 lúc 15:45

Ta co:S=4^0+4^1+4^2+...+4^35

=>4S=4^1+4^2+...+4^36

=>4S-S=(4^1+4^2+...+4^36)-(4^0+4^1+...+4^35)

hay 3S=4^36-1

3S=64^12-1<64^12

Vay 3S<64^12

co gi hoi mik de mik lam tiep nhe

bye...

lol
21 tháng 12 2020 lúc 19:48

hello

Khách vãng lai đã xóa
Trần Đỗ Thi Thiên
Xem chi tiết
Huỳnh Quang Sang
16 tháng 12 2018 lúc 10:17

\(S=4^0+4^1+4^2+4^3+...+4^{35}\)

\(4S=4^1+4^2+4^3+...+4^{36}\)

\(4S-S=(4^1+4^2+4^3+...+4^{36})-(4^0+4^1+4^2+4^3+...+4^{35})\)

\(3S=4^{36}-4^0\)

\(S=4^{36}-1\)

\(\text{Ta thấy :}64^{12}=(4^3)^{12}=4^{36}\)

\(\text{Mà }4^{36}-1>4^{36}\text{ nên }3S>A\)

Trần Đỗ Thi Thiên
18 tháng 12 2018 lúc 19:09

Là sao

uchiha sasuke
1 tháng 1 2019 lúc 20:59

ban TL làm đúng rồi câu này dễ mà

Nguyễn Hải Yến
Xem chi tiết
nyan cat
Xem chi tiết
Cô Tuyết Ngọc
29 tháng 3 2023 lúc 8:38

em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé

       D =           \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) -  \(\dfrac{202}{7^{203}}\)

\(\times\) D  =  \(\dfrac{1}{7}\) -  \(\dfrac{2}{7^2}\) +  \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\)  + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)

7D +D  =   \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)

         D = (  \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8

Đặt    B =      \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\) 

  7   \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)

7B + B   =  1 - \(\dfrac{1}{7^{202}}\)

          B   =  ( 1 - \(\dfrac{1}{7^{202}}\)) : 8

         D  =  [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8  - \(\dfrac{202}{7^{203}}\)] : 8 

          D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)

 

Trần Thị Thúy Hiền
Xem chi tiết
Nohara Shinnosuke
26 tháng 12 2016 lúc 21:18

4S=4.(40+41+43+...+435)

4S=41+42+...+436

4S-S=(41-41)+(42-42)+...+(335-335)+336-30

3S=0+0+...+0+336-1

6412=(34)12=336

vỉ 336-1<336 nên 3S<6412

Mai Nhất Long
27 tháng 11 2017 lúc 20:43

SAI ROI

Mai Nhất Long
27 tháng 11 2017 lúc 20:46

TRALOI DUNG NHUNG CACH LAM SAI

Lâm Huyên
Xem chi tiết
kagamine rin len
10 tháng 6 2016 lúc 10:33

A=4(3^2+1)(3^4+1)(3^8+1)...(3^64+1)

2A=8(3^2+1)(3^4+1)(3^8+1)...(3^64+1)

2A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^64+1)

2A=(3^4-1)(3^4+1)(3^8+1)...(3^64+1)

2A=(3^8-1)(3^8+1)....(3^64+1)

2A=(3^16-1)...(3^64+1)

......

2A=(3^64-1)(3^64+1)

2A=3^128-1

A=(3^128-1)/2

=> A>B

Mai Thành Đạt
10 tháng 6 2016 lúc 10:43

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^{16}-1\right)\left(3^{16}+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^{64}-1\right)\left(3^{64}+1\right)\Leftrightarrow4A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{4}\)

Ta có \(\frac{3^{128}-1}{4}< 3^{128}-1\Rightarrow A< B\)

Lâm Huyền:Bạn sai đề rồi B phải là 3128-1 chứ !

Mai Thành Đạt
10 tháng 6 2016 lúc 10:44

Sorry,mình tính sai.Bạn thay 4A thành 2A va các số 4 thành số 2 nhé