Giúp mk với:Tính
(6^9.2^10+2^12):(2^19.273+15.4^9.9^4)
2^19.27^3+15.4^9.9^4/6^9.2^10+12^10
làm giúp mk nha
\(\dfrac{2^{19}.27^3-15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}.\left(3^3\right)^3-3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}=\dfrac{2^{19}.3^9-5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}=\dfrac{2^{18}.3^9\left(2-5\right)}{2^{19}.3^9\left(1+6\right)}=\dfrac{-3}{2.7}=-\dfrac{3}{14}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+5.3.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{2^{18}.3^9}{2^{19}.3^9}=\frac{1}{2}\)
P/s: Sai gì bỏ qua =)
\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\\ =\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^9.3^9+2^{20}.3^{10}}\\ =\dfrac{2^{18}.3^9\left(2+5\right)}{2^9.3^9\left(2^{11}.3+1\right)}\\ =\dfrac{2^9.7}{2^9.12+1}=\dfrac{7}{13}\)
\(\frac{^{2^9.27^3+15.4^9.9^4}}{6^9.2^0+12^{10}}\)
Tính:
\(\dfrac{2.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
Cứuuuuuuuuuuuuuuuuu
\(=\dfrac{2\cdot3^9+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+2^{20}\cdot3^{10}}=\dfrac{2\cdot3^9+3^9\cdot2^{18}\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}\\ =\dfrac{2\cdot3^9\left(1+2^{17}\cdot5\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}=\dfrac{1+2^{17}\cdot5}{2^{18}\cdot7}\)
rút gọn:\(\frac{2^{19}.27^9+15.4^9.9^4}{6^9.2^{12}+12^{10}}\)
Ta có:
\(\frac{2^{19}.27^9+15.4^9.9^4}{6^9.2^{12}+12^{10}}=\frac{2^{19}.\left(3^3\right)^9+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{12}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^{27}+3.5.2^{18}.3^8}{2^9.3^9.2^{12}+2^{20}.3^{10}}=\frac{2^{19}.3^{27}+3^9.2^{18}.5}{2^{21}.3^9+2^{20}.3^{10}}=\frac{2^{18}.3^9.\left(2.3^{18}+5\right)}{2^{20}.3^9.\left(2+3\right)}\)
\(=\frac{1.1.\left(2.3^{18}+5\right)}{2^2.1.5}=\frac{2.3^{18}+5}{20}\)
rút gọn: \(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9.\left(1+5\right)}{2^{19}.3^9.\left(1+2.3\right)}=\frac{6}{7}\)
Rút gọn
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.3^9+3^9.5.2^{18}}{2^9.3^9.2^{10}+2^{20}.3^{10}}=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{1}{2}\)