Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2022 lúc 19:25

\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(x=y=z\)

Dương Thiên Thanh
Xem chi tiết
Nguyễn Vân Hương
Xem chi tiết
KCLH Kedokatoji
28 tháng 10 2020 lúc 22:21

a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)

Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)

Vật bất đẳng thức được chứng minh

Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết
Nguyễn Minh Đăng
24 tháng 10 2020 lúc 13:51

Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)

\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)

Tương tự ta chứng minh được:

\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)

Cộng vế 3 BĐT trên lại:

\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)

\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)

Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:

\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)

\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)

\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)

\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)

\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)

Vậy Max(A) = 1 khi x = y = z = 1

Khách vãng lai đã xóa
Inequalities
25 tháng 10 2020 lúc 8:07

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Lê Minh Đức
13 tháng 5 2017 lúc 16:41

Ta chứng minh được các bất đẳng thức bằng biến đổi tương đương và bất đẳng thức Cô-si:

\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\)

\(\Rightarrow\frac{xyz}{xy+yz+zx}\le\frac{\sqrt[3]{xyz}}{3}\)

Mà \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\)

Vậy \(A\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}.\frac{\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}\)

\(A\le\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{3}=\frac{3+\sqrt{3}}{3}\)

pham bao anh
Xem chi tiết
kimochi
Xem chi tiết
Đào Thu Hoà
18 tháng 5 2019 lúc 11:34

áp dụng bất đẳng thức Cauchy cho 2 số không âm ta có

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx},\)với mọi x,y,z dương\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}\)với x,y,z dương

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

\(\Leftrightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{1}{8}\)

Hay giá trị lớn nhất của M =8 khi x=y=z

Đào Thu Hoà
18 tháng 5 2019 lúc 11:38

mk gõ nhầm chỗ kết luận GTNN của M=1/8

kimochi
2 tháng 7 2019 lúc 18:15

thank you very much !

Nga Nguyễn
Xem chi tiết
le vi dai
Xem chi tiết
Neet
22 tháng 6 2017 lúc 23:35

thay xyz=(4-x-y-z)2vào

tran nguyen bao quan
10 tháng 9 2018 lúc 19:28

Ta có \(x+y+z+\sqrt{xyz}=4\Rightarrow4x+4y+4z+4\sqrt{xyz}=16\)

Ta lại có \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{x\left(4x+4\sqrt{xyz}+yz\right)}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=\sqrt{\left(2x+\sqrt{xyz}\right)^2}=2x+\sqrt{xyz}\)

Tương tự \(\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\)

\(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Suy ra \(P=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}=2x+2y+2z+2\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2.4=8\)

Thân thi thu
Xem chi tiết