Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2017 lúc 16:30

Ta có: SHBC + SHAC + SHAB = SABC

=> S H B C S A B C + S H A C S A B C + S H A B S A B C = 1

ó H A ' . B C A A ' . B C + H B ' . A C B B ' . A C + H C ' . B A C C ' . B A = 1

ó H A ' A A ' + H B ' B B ' + H C ' C C ' = 1 (đpcm)

Đáp án cần chọn là: A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2017 lúc 16:01

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: S H B C + S H A C + S H A B = S A B C

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Thủy Phạm Thanh
Xem chi tiết
Nguyễn Thị Thúy Ngân
Xem chi tiết
Trần Minh Hoàng
31 tháng 5 2021 lúc 15:55

a) Dễ thấy A, H, K thẳng hàng.

Ta có \(\widehat{KCB}=\widehat{HCB}=90^o-\widehat{ABC}=\widehat{KAB}\).

Suy ra tứ giác ACKB nội tiếp.

b) \(\widehat{ABD}=\widehat{AA'C};\widehat{ADB}=\widehat{ACA'}=90^o\Rightarrow\Delta ABD\sim\Delta AA'C\left(g.g\right)\Rightarrow\widehat{BAD}=\widehat{A'AC}\)

\(\Rightarrow\widehat{AA'C}=90^o-\widehat{ABC}=90^o-\widehat{AEF}\Rightarrow AA'\perp EF\)

c) Ta có BH // A'C (do cùng vuông góc với AC), CH // A'B (do cùng vuông góc với AB) nên tứ giác BHCA' là hình bình hành. Suy ra H, I, A' thẳng hàng.

d) Do OI là đường trung bình của tam giác A'AH nên OI // AH,\(\dfrac{OI}{AH}=\dfrac{1}{2}=\dfrac{IG}{AG}\Rightarrow\) H, G, O thẳng hàng và \(\dfrac{OG}{HG}=\dfrac{1}{2}\). Từ đó \(S_{AHG}=2S_{AOG}\) (đpcm) 

Thủy Phạm Thanh
Xem chi tiết
tien hung
7 tháng 4 2019 lúc 19:06

Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi

Phạm Thành Đông
9 tháng 3 2021 lúc 13:19

A B C C' A' B' H

Khách vãng lai đã xóa
Phạm Thành Đông
9 tháng 3 2021 lúc 13:34

Ý của bạn  là đề bài cho là \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)?

Khách vãng lai đã xóa
Hoàng Vũ Trung
Xem chi tiết
Hoàng Vũ Trung
Xem chi tiết
Trần Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 10:23

a: góc HBC+góc HCB=90 độ-góc ACB+90 độ-góc ABC=góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng K qua BC

=>BH=BK và CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

CH=CK

BC chung

=>ΔBHC=ΔBKC

=>góc BKC=góc BHC

=>góc BKC+góc BAC=180 độ

=>ABKC nội tiếp

b: Gọi Ax là tiếp tuyến của (O) tại A

=>góc xAC=góc ABC=góc AEF

=>EF//Ax

=>EF vuông góc OA

c: Xét tứ giác BHCA' có

BH//CA'

BA'//CH

=>BHCA' là hbh

=>H,I,A' thẳng hàng

Vũ Nguyễn Phương Thảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 8 2018 lúc 2:12

Ta có AA′⊥ AB′ vì chúng là hai tia phân giác của hai góc kề bù. Tương tự AA′⊥ AC′. Vì qua A chỉ có một đường vuông góc với AA' nên ba điểm B', A, C' thẳng hàng và AA′⊥ B′C′, hay A'A là một đường cao của tam giác A'B'C'. Hoàn toàn tương tự ta chứng minh được BB' và CC' là hai đường cao của tam giác A'B'C'.

Mặt khác theo cách chứng minh của bài 9.5 ta có AA', BB', CC' là ba tia phân giác của các góc A, B, C của tam giác ABC. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C'.