tính nhanh: 1^2+2^2+...+100^2
tính nhanh: (100 - 1^2).(100 - 2^2). ... . ( 100 - 99^2)
tính nhanh
1945.(100-1^2).(100-2^2).(100-25^2)
Tính nhanh.
\(M = \left( {100 - 1} \right).\left( {100 - {2^2}} \right).\left( {100 - {3^2}} \right)...\left( {100 - {{50}^2}} \right)\)
Ta có:
\(\begin{array}{l}M = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).\,\,...\left( {{{10}^2} - {{10}^2}} \right)..\,\,.\left( {100 - {{50}^2}} \right)\\ = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).... 0 ...\left( {100 - {{50}^2}} \right)\\ = 0\end{array}\)
tính nhanh a= 1+2+2^2+2^3 +...+2^100
A = 1 + 2 + 22 + 23 + ...+ 2100
A\(\times\)2 = 2 + 22 + 23 +...+ 2100 + 2101
A \(\times\)2 - A = 2101 - 1
A = 2101 - 1
Tính nhanh A = (1^100+2^100+…+10^100).(5^10-25^5)
B = (2^5+3^5+4^5).(1^2+2^2+…+100^2).(4^10-2^20)
Bạn tự hỏi rồi từ trả lời ! Bạn xem đầu bạn có nóng không ?
`Answer:`
\(A=\left(1^{100}+2^{100}+...+10^{100}\right)\left(5^{10}-25^5\right)\)
\(=\left(1^{100}+2^{100}+...+10^{100}\right)[5^{10}-\left(5^2\right)^5]\)
\(=\left(1^{100}+2^{100}+...+10^{100}\right)\left(5^{10}-5^{10}\right)\)
\(=\left(1^{100}+2^{100}+...+10^{100}\right).0\)
\(=0\)
\(B=\left(2^5+3^5+4^5\right)\left(1^2+2^2+...+100^2\right)\left(4^{10}-2^{20}\right)\)
\(=\left(2^5+3^5+4^5\right)\left(1^2+2^2+...+100^2\right)\left(2^{2.10}-2^{20}\right)\)
\(=\left(2^5+3^5+4^5\right)\left(1^2+2^2+...+100^2\right).0\)
\(=0\)
Tính nhanh
(1^2+2^2+....+100^2).( 3^4 - 9 ^2)
tính nhanh
A=(1^100+2^100+…+10^100).(5^10-25^5)
B=(2^5+3^5+4^5).(1^2+2^2+…+100^2).(4^10-2^20)
Tính nhanh:
101+100+........+3+2+1/101-100+100-99+...........+3-2+1
( 101+100+.......+3+2+1 ) / ( 101-100+100_99+........+ 4 - 3 + 2 - 1 )
= [ ( 101+1 )+( 100+2 )+....+( 52+50 )+ 51 ] / [ ( 101-100 )+(100-99)+........+( 4 - 3 )+( 2 - 1 )
= 102+102+.........+102+51 / 1+1+..............+1+1
= { [ 51( cặp) * 102 ] +51 } / [ 51(cặp) * 1 ]
= 5252 + 51 / 51
= 5253 / 51
= 103
tính nhanh (1+2+3+...+99+100).(1/2-1/3-1/7-1/9)(63.1,2-21.3,6)/1-2+3-4+...+99-100
Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)
\(=6,3.1,2-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.1,2-6,3.1,2\)
\(=0\)
\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)