cho các số thực a,b,c thoả mãn a+b+c=6 ,0<hoặc bằng a,b,c <hoặc bằng 4.GTLN P=a^2+b^2+c^2+ab+bc+ac
Cho các số thực a,b,c thoả mãn a+b+c=6, 0 <= a,b,c <= 4. GTLN của P=a^2+b^2+c^2+ab+bc+ac?
Câu này làm thế nào nhỉ.Mình cũng đang thắc mắc.Gần thi huyện rồi
Cho A B C là Các Số Thực Dương thoả mãn A+b+c=6
các số thực dương là các số > 0 ( kể cả phân số , số thập phân , số vô tỉ )
1) Cho x, y, z là các số thực thoả mãn xyz = 1
CMR: 1/1+x+xy + 1/1+y+yz + 1/1+z+zx = 1
2)Cho a, b, c là các số thực khác 0 thoả mãn a+b-c/c = b+c-a/a = a+c-b/b
Tính giá trị của biểu thức P= (1 + b/a).(1 + c/b).(1 + a/c)
chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
Cho các số thực dương a, b, c thoả mãn a + b + c = 6. Tìm min A = \(\dfrac{a^2}{a+b}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+c}\)
Áp dụng BĐT bunhiacop ski dạng phân thức(cauchy schwart)
`=>A>=(a+b+c)^2/(a+b+b+c+a+c)`
`<=>A>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2`
Mà `a+b+c=6`
`=>A>=6/2=3`
Dấu "=" xảy ra khi `a=b=c=2`
Câu hỏi của Thu Nguyễn - Toán lớp 9 - Học trực tuyến OLM
tham khảo ^^
cho a,b,c là các số thực đôi 1 khác nhau và khác 0 thoả mãn: a^2-b=b^2-c=c^2-a. tính giá thị của biểu thức P=(a+b)(b+c)(c+a)
cho các số thực a,b,c thoả mãn a^2+b^2+c^2+1/a^2+1/b^2+1/c^2=6 chứng minh rằng a^2012+b^2012+c^2012=3
cho các số a,b,c là các số thực khác không thoả mãn điều kiện 1/a+1/2b+1/c=0. Tính giá trị M=2bc/a^2+ca/4b^2+2ab/c^2
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{2b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\)
\(M=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3}{xyz}=\dfrac{-z^3-3xy\left(-z\right)+z^3}{xyz}\)
\(=\dfrac{3xyz}{xyz}=3\)