A=1+2+3+...+99+100+101
A=101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
Lời giải:
Xét tử số:
$101+100+99+98+...+3+2+1=(101+1).101:2=5151$
Xét mẫu số:
$101-100+99-98+...+3-2+1$
$=(101-100)+(99-98)+...+(3-2)+1=\underbrace{1+1+....+1}_{50} +1=1.50+1=51$
Vậy $A=\frac{5151}{51}=101$
A=101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
B=3737.43/4343.37
\(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\\ A=\dfrac{\left[\left(101-1\right):1+1\right]\times\left(101+1\right):2}{1+1+...+1+1}\\ A=\dfrac{5151}{51}=101\\ B=\dfrac{3737.43}{4343.37}\\ B=\dfrac{37.101.43}{43.101.37}\\ B=1\)
A] 101-100+99-98+.......+3-2+1
B] 101+100+99+98+.......+3+2+1
câu a đề sai bn ạ
đáng ra là chỗ cuối là 3 - 2
Nói chung mik sẽ làm theo bài đúng
A] Số các số hạng là:
(101 - 1) : 1 + 1 = 101 số
Tổng trên là:
1 x 101 = 101
nha bn
B] mk không bt
tính
a. A= 101+100+99+98+....+3+2+1/101-100+99-98+...+3-2+1
b,B= 3737.43-4343.37/2+4+6+...+100
A=101+100+99+98+....+3+2+1/101-100+99-98+...+3-2+1
B=423134.846267-423133/423133.846267+423134
\(A=\frac{101+100+99+98+..+3+2+1}{101-100+99-98+..+3-2+1}=\frac{101\times\frac{102}{2}}{1+1+..+1}=\frac{101\times102}{2\times51}=101\)
\(B=\frac{423134.846267-423133}{423133.846267+423134}=\frac{423134^2+423134.423133-423133}{423133^2+423133.423134+423134}=\frac{423134^2+423133^2}{423134^2+423133^2}=1\)
A=101+100+98+97+...+3+2+1/101-100+99-98+...+3-2+1
A = \(\dfrac{101+100+98+97+...+3+2+1}{101-100+99-98+...+3-2+1}\)
= \(\dfrac{\left(101+1\right).101:2}{1+1+1+...+1}\)
= \(\dfrac{5151}{101}\) = 51
tính
\(A=\frac{101+100+99+.....+3+2+1}{101-100+99-98+......+3-2+1}\)
\(A =\)\(\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(B=\) \(\dfrac{3737.43-4343.37}{2+4+6+...+100}\)
Làm cách lớp 6 thôi ah
\(A=\dfrac{101\cdot\dfrac{102}{2}}{\left(101-100\right)+99-98+...+3-2+1}\)
\(=\dfrac{101\cdot51}{1+1+...+1}=\dfrac{101\cdot51}{51}=101\)
\(B=\dfrac{37\cdot43\left(101-101\right)}{2+4+...+100}=0\)
a, \(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
Ta có: \(T=101+100+99+98+...+3+2+1\) \(=\dfrac{\left(101+1\right).101}{2}\)
\(=\dfrac{102.101}{2}\Leftrightarrow51.101\)
\(M=101-100+99-98+...+3-2+1\)
Ta có: \(101:2=50\) (dư \(1\))
\(\Rightarrow M=\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\)
Có \(50\) dấu ngoặc tròn "\(\left(\right)\)"
\(\Rightarrow M=1+1+...+1+1=51.1=51\)
\(M\) có \(51\) số \(1\)
\(\Rightarrow A=\dfrac{T}{M}=\dfrac{51.101}{51}=101\)
Vậy \(A=101\)
b, \(B=\dfrac{3737.43-4343.37}{2+4+6+...100}\)
Ta có: \(T=3737.43-4343.37\)
\(T=37.101.43-43.101.37\)
\(T=0\)
\(\Rightarrow\) \(B=\dfrac{T}{2+4+6+...+100}=\dfrac{0}{2+4+6+...+100}\) \(=0\)
Vậy \(B=0\)
Tính:
a; C=101+100+99+98+............+3+2+1/101-100+99-98+.................+3-2+1
b; D=3737.43-443.37/2+4+6+....................+100
101 + 100 + ... + 2 + 1 = 101x102/2 = 101x51 = 5151
101 - 100 + 99 - .. + 1 = ( 101 -100 ) + ( 99 - 98 ) + ... + ( 3 - 2 ) + 1 = 1 + 1 + 1 + ... + 1 ( 51 số ) = 51
suy ra C = 5151/51 = 101
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3737x43 - 4343x36 = 37x101x43 - 43x101x36 = 43x101 = 4343
2 + 4 + 6 +... + 100 = 2x( 1 + 2 + ... + 50 ) = 2x50x51/2 = 50x51 = 2550
vậy D = 4343/2550
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!