cho tam giác ABC nhọn có đường cao AH. Gọi M, N lần lượt là các điểm đối xungứ của H qua AB, AC. Gọi giao điểm của MN voiứ AB, AC lần lượt lá F, E. Chứng minh 5 điểm A, M, B, H, E cùng thuộc một đường tròn
Bài 5. Cho tam giác ABC cân tại A có AH đường cao (H BC ) . Lấy điểm E thuộc cạnh AB, F
lượt thuộc cạnh AC sao cho BE = CF.
a) Chứng minh hai điểm E, F đối xứng với nhau qua AH;
b) Gọi O là giao điểm của EF với AH. Các tia BO, CO cắt AC, AB lần lượt ở I và K.
Chứng minh EK = IF.
\(a,\left\{{}\begin{matrix}BE=CF\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\Rightarrow\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\left(Ta-lét.đảo\right)\\ \Rightarrow AH\perp EF.tại.O\left(1\right)\)
Tam giác ABC cân tại A có AH là đường cao cũng là trung tuyến
Áp dụng hệ quả Ta-lét: \(\left\{{}\begin{matrix}\dfrac{EO}{BH}=\dfrac{AO}{AH}\\\dfrac{AO}{AH}=\dfrac{OF}{HC}\end{matrix}\right.\Rightarrow\dfrac{EO}{BH}=\dfrac{OF}{HC}\)
Mà \(BH=HC\left(AH.trung.tuyến\right)\Rightarrow EO=OF\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\) E đối xứng F qua AH
\(b,\Delta BOC\) có \(OH\) vừa là đường cao vừa là trung tuyên nên là tam giác cân
\(\Rightarrow OB=OC;\widehat{OBC}=\widehat{OCB}\\ \Rightarrow\widehat{ABC}-\widehat{OBC}=\widehat{ACB}-\widehat{OCB}\left(\Delta ABC.cân.tại.A\right)\\ \Rightarrow\widehat{KBO}=\widehat{ICO}\)
\(\left\{{}\begin{matrix}OB=OC\left(cm.trên\right)\\\widehat{KBO}=\widehat{ICO}\left(cm.trên\right)\\\widehat{KOB}=\widehat{IOC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta BOK=\Delta COI\left(g.c.g\right)\\ \Rightarrow BK=CI\\ \Rightarrow BK-BE=CI-CF\left(BK=CF.do.giả.thiết\right)\\ \Rightarrow EK=FI\)
Cho tam giác nhọn ABC , đường cao AH, gọi M là điểm đối xứng với H qua AB, N là điểm đối xứng với H qua AC
a. tam giác AMN là tam giác gì?
b. MN giao AC, AB lần lượt ở E, F. C/m HA là phân giác của góc EHF
c. C/m AH, BE, CF đồng quy
Cho tam giác ABC nhọn, các đường trung tuyến BM và CN. Gọi E và F lần lượt là điểm đối xứng của B qua M; của C qua N. Chứng minh a. Xét tam giác ABC: M, N lần lượt là trung điểm AB, AC (gt) => MN là đường trung bình của tam giác ABC (đ/n) => MN // BC (t/c) => Tứ giác MNCB là hình thang (dhnb) M BC a, Tứ giác ABCE là hình bình hành b, BF// = AC M c. A là trung điểm của EF
b: Xét tứ giác ABCE có
M là trung điểm của AC
M là trung điểm của BE
Do đó:ABCE là hình bình hành
cho tam giác abc vuông tại a đường cao ah . Gọi K , E lần lượt là các điểm đối xứng của H qua AB và AC .Gọi i là giao điểm của KH và AB , N là giao điểm của EA và AC . a, chứng minh AH = IN b, chứng minh A là trung điểm của KE c, tứ giác BCKE là hình gì ? vì sao?
a: Xét tứ giác AIHN có
\(\widehat{AIH}=\widehat{ANH}=\widehat{NAI}=90^0\)
Do đó: AIHN là hình chữ nhật
Suy ra: AH=IN
Cho tam giác ABC cân tại A có AH đường cao. Gọi M và N lần lượt là trung điểm AB và AC. Gọi D là điểm đối xứng của H qua M, E là điểm đối xứng của A qua H. Gọi F là hình chiếu của H lên EC, I và K lần lượt là trung điểm HF và FC. Chứng minh EI vuông góc BF
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
c) E là điểm đối xứng của H qua M
\(\Rightarrow\)ME = MH
Tứ giác AHBE có MA = MB (gt); ME = MH (gt)
\(\Rightarrow\)AHBE là hình bình hành
mà \(\widehat{AHB}\)= 900
\(\Rightarrow\)hình bình hành AHBE là hình chữ nhật
Cho tam giác ABC với ba góc nhọn, đường cao AD. Gọi M là điểm đối xứng với D qua AB , N là điểm đối xứng với D qua AC. Gọi E, F thao thứ tự là giao điểm của MN với AC, AB.
a) Chứng minh 5 điểm A , F , D , C, N cùng thuộc một đường tròn.
b) Chứng minh AD, CF, BE đồng qui
cho tam giác ABC có 3 góc nhọn . đường cao AH . gọi E và F là các điểm đối xứng của H qua các cạnh AB và AC lần lượt tại M ; N . chứng minh MC song song EH . NB song song FH
Câu hỏi này phải hỏi là NC thì song song với EH nha bạn chu thế này không lam được
theo suy luận của mik và theo lời các bạn đã comment thì bài này sai đề hoặc thầy/cô troll đứa iq cao nhất lớp