Giải hệ phương trình:{xy+xz=44 ;xz+yz=23} Giải hộ nhanh nha
số nghiệm nguyên dương[x;y;z]của hệ phương trình
xy+xz=44
xz+yz=23
\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(
loại )
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)
=>x,y,z vô nghiệm hoặc đề sai
z(x+y)=23 TH1 z=1 thi x=22,y=1
TH2 z=23 thi vo nghiem
Giải hệ phương trình: \(\hept{\begin{cases}x^2+xy+xz=48\\xy+y^2+yz=12\\xz+yz+z^2=84\end{cases}}\)
Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2+xy+xz=48\left(1\right)\\4xy+4y^2+4yz=48\end{cases}}\)
\(\Rightarrow x^2+xy+xz-4xy-4y^2-4yz=0\)
\(\Leftrightarrow x^2-3xy-4y^2+xz-4yz=0\)
\(\Leftrightarrow\left(x-4y\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4y\\x+y+z=0\end{cases}}\)
Với x+y+z=0
\(\left(1\right)\Leftrightarrow x\left(x+y+z\right)=48\Leftrightarrow0x=48\)(vô lí)
=> x=4y
Đến đây đơn giản rồi nhé
Giải hệ phương trình:
xy(x+y)=6
xz(x+z)=30
yz(y+z)=12
Giải hệ phương trình: \(\hept{\begin{cases}zx+xy=x^2+2\\xy+yz=y^2+3\\yz+xz=z^2+4\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x+yz=2\\y+xz=2\\z+xy=2\end{cases}}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=xy+yz+xz\\x^{2021}+y^{2021}+z^{2021}=3^{2022}\end{matrix}\right.\)
PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Nhận thấy VT\(\ge\)0 với mọi x,y,z
Dấu = xảy ra <=> x=y=z
Thay x=y=z vào pt (2) ta được:
\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)
\(\Rightarrow x=y=z=3\)
Vậy (x;y;z)=(3;3;3)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+z^2=1\\xy+yz+xz=1\end{cases}}\)
\(x^2+y^2+z^2=xy+yz+xz=1< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0< =>x=y=z=1....\\ .\)
Giải hệ phương trình :\(\left\{{}\begin{matrix}x+xy+y=1\\y+yz+z=4\\z+xz+x=9\end{matrix}\right.\) trong đó x,y,z>0
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=5\\zx+z+x+1=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=10\end{matrix}\right.\) (1)
Nhân vế với vế: \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\) (2)
Chia vế cho vế của (2) cho từng pt của (1):
\(\Rightarrow\left\{{}\begin{matrix}z+1=5\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(1;0;4\right)\) (loại)
Hệ vô nghiệm do \(y>0\)
Giải hệ phương trình:
\(\hept{\begin{cases}x+y+xy=19\\y+z+yz=11\\z+x+xz=14\end{cases}}\)
cộng 1 vào mỗi pt sau đó phân tích đa thức thành nhân tử ở mỗi pt. rồi nhân các hạng tử vừa phân tích của 3 pt lại rồi bỏ mũ 2. Sau đó lấy pt đó chia cho mỗi phương trình trên cứ làm vậy là ra!!
Bạn có thể tham khảo cách của mình nha:
\(x+y+xy=19\Rightarrow\left(x+1\right)+y\left(x+1\right)=20\Rightarrow\left(x+1\right)\left(y+1\right)=20\) (1)
\(y+z+yz=11\Rightarrow\left(y+1\right)+z\left(y+1\right)=12\Rightarrow\left(y+1\right)\left(z+1\right)=12\) (2)
\(z+x+zx=14\Rightarrow\left(z+1\right)+x\left(z+1\right)=15\Rightarrow\left(z+1\right)\left(x+1\right)=15\) (3)
Nhân từng của (1),(2),(3), ta được:
\(\left[\left(x+1\right)\left(y+1\right)\left(x+1\right)\right]^2=20.12.15=3600\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\)60 hoặc -60
+)Nếu \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=60\)
Từ (1)\(\Rightarrow z+1=60:20=3\Rightarrow z=2\)
Từ (2)\(\Rightarrow x+1=60:12=5\Rightarrow x=4\)
Từ (3)\(\Rightarrow y+1=60:15=4\Rightarrow y=3\)
+)Nếu \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-60\)
Từ (1)\(\Rightarrow z+1=-60:20=-3\Rightarrow z=-4\)
Từ (2)\(\Rightarrow x+1=-60:12=-5\Rightarrow x=-6\)
Từ (3)\(\Rightarrow y+1=-60:15=-4\Rightarrow y=-5\)
Vậy x=4,y=3,z=2 hoặc x=-6,y=-5,z=-4