Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 10 2017 lúc 2:44

Chọn A.

Theo quy tắc hình bình hành ta có 

Do đó 

( vì AC và BD vuông góc với nhau)

Mặt khác  và theo định lý Pitago ta có:

Suy ra 

Got many jams
Xem chi tiết
Hồng Phúc
16 tháng 12 2020 lúc 9:41

a, \(AC=\dfrac{AB}{sin45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)

\(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\widehat{BAC}=a.a\sqrt{2}.cos45^o=a^2\)

b, \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)=\overrightarrow{AC}\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)

\(=\overrightarrow{AC}.\overrightarrow{BD}+\overrightarrow{AC}.\overrightarrow{BC}\)

\(=AC.BD.cos90^o+AC.AD.cos45^o\)

\(=a\sqrt{2}.a\sqrt{2}.0+a\sqrt{2}.a.\dfrac{\sqrt{2}}{2}=a^2\)

c, \(\overrightarrow{AB}.\overrightarrow{BD}=AB.BD.cos135^o=-a.a\sqrt{2}.\dfrac{\sqrt{2}}{2}=-a^2\)

d, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{BC}.\left(\overrightarrow{AD}+\overrightarrow{BD}\right)\)

\(=\overrightarrow{BC}.\overrightarrow{AD}+\overrightarrow{BC}.\overrightarrow{BD}\)

\(=AD^2+BC.BD.cos45^o\)

\(=a^2+a.a\sqrt{2}.\dfrac{\sqrt{2}}{2}=2a^2\)

e, \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)

\(=\left(\overrightarrow{AC}+\overrightarrow{AC}\right)\left(\overrightarrow{DB}+\overrightarrow{DB}\right)\)

\(=4.\overrightarrow{AC}.\overrightarrow{DB}=4.AC.DB.cos90^o=0\)

Le Khong Bao Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2019 lúc 18:23

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Xét tam giác vuông AHB, ta có :

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

Địt mẹ mày
5 tháng 2 2021 lúc 14:11

Mày N Mày Chết M Mày Đi Kêu Cặk

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2019 lúc 13:29

Huyền Trân
Xem chi tiết
Kudo Shinichi
18 tháng 9 2019 lúc 20:04

A B C D M H 1 2 4

a ) Ta có : \(AB=AD=\frac{CD}{2}\)    và M là trung điểm của CD (gt)

\(\Leftrightarrow AB=DM\) và AB // DM 

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của \(\Delta BDC\) mà MB = MD = MC.

Do đó \(\Delta BDC\) là tam giác vuông tại B hay \(DB\perp BC\)

c) ABMD là hình thoi (cmt)  \(\Leftrightarrow\widehat{D}_1=\widehat{D}_2\) 

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

\(HB=HD=\frac{1}{2}BD=\frac{1}{2}.4=2\left(cm\right)\)

Xét tam giác vuông AHB, ta có :

\(AH=\sqrt{AB^2-HB^2}\) ( định lí Pitago )

          \(=\sqrt{2,5^2-2^2}=1,5\left(cm\right)\)

\(\Rightarrow AM=3\left(cm\right)\)

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

\(\Rightarrow BC=AM=3\left(cm\right)\)

Ta có :

\(S_{BDC}=\frac{1}{2}BD.BC=\frac{1}{2}.4.3=6\left(cm^2\right)\)

M là trung điểm của DC nên

\(S_{BMD}=S_{BMC}=\frac{S_{BCD}}{2}=3\left(cm^2\right)\) 

(chung đường cao kẻ từ B và MD = MC)

Mặt khác \(\Delta ABD=\Delta MDB\) ( ABCD là hình thoi )

\(\Leftrightarrow S_{ABD}=S_{BMD}=3\left(cm^2\right)\)

Vậy \(S_{ABCD}=S_{ABD}+S_{BMD}+S_{BMC}=9\left(cm^2\right)\)

Chúc bạn học tốt !!!

Địt mẹ mày
5 tháng 2 2021 lúc 14:13

Buồi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 4 2017 lúc 11:18

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 12 2021 lúc 17:49

1.

\(\overrightarrow{AB}.\overrightarrow{BC}=\overrightarrow{AB}.\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}.\left(-\overrightarrow{AB}\right)+\overrightarrow{AB}.\overrightarrow{AC}=-AB^2=-25\)

2.

\(\overrightarrow{AB}.\overrightarrow{BD}=\overrightarrow{AB}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)=-\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AD}=-AB^2+0=-64\)

Phạm Khang
Xem chi tiết