Tinh giá trị cuả biểu thức sau
7m+2n-6 ta.i m=1,n=2
Rút gọn và tính giá trị cuả biểu thức M với x=2008 \(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}\)
Cho các số thực a,b,c thoả mãn (a^2)+(b^2)+(c^2)=2 . Tìm giá trị lớn nhất nhỏ nhất cuả biểu thức M=a+b+c-abc
Giá trị của biểu thức đã cho tại x = 1
Giá trị của biểu thức đã cho tại x = 10
: Giá trị của biểu thức đã cho tại x = 1 phần 2
: Giá trị của biểu thức đã cho tại x = âm 3 phần 2
Giá trị của biểu thức đã cho tại x= -1
Biểu thức đâu hở bạn
Biểu thức đâu bạn
Đề đâu??????
B1:Cho biểu thức A = ( -a + b - c) - ( -a -b -c)
a ;Rút gọn A b ;Tình giá trị biểu thức A khi a = 1 ; b= - 1 ; c= - 2
B2 Cho biểu thức A = ( -m +n - p) - ( -m -n -p)
a ;Rút gọn A b ;Tình giá trị biểu thức A khi a = 1 ; b= - 1 ; c= - 2
B3; Cho biểu thức A = (-2a + 3b - 4c) - (-2a - 3b - 4c)
a ;Rút gọn A b ;Tình giá trị biểu thức A khi a = 2012 ; b= - 1 ; c= - 2013
bài 1 : a +b , rút gọn và tính
(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b= -2.1+2.-1=-2+-2 = -4
tìm giá trị nguyên của n để biểu thức sau đạt giá trị lớn nhất A=9n-4/2n-7
Đặt \(A=\frac{9n-4}{2n-7}=\frac{9n-\frac{63}{2}+\frac{33}{2}}{2n-7}=\frac{\frac{9}{2}\left(2n-7\right)+\frac{33}{2}}{2n-7}=\frac{9}{2}+\frac{\frac{55}{2}}{2n-7}\)
Để A có GTLN
\(\Leftrightarrow\frac{\frac{55}{2}}{2n-7}\)có GTLN
\(\Leftrightarrow2n-7\)có GTNN, 2n-7 lớn hơn 0 và n thuộc Z
\(\Leftrightarrow2n-7=1\)
\(\Leftrightarrow2n=8\)
\(\Leftrightarrow n=4\)
Vậy, A có GTLN là 32 khi x=4
Cho biểu thức : B = 6: n -3 , n E Z. Tìm các giá trị nguyên n để:
a) biểu thức B là một phân số
b)biểu thức B không phải là phân số
c)biểu thức B có giá trị nguyên
Cho biểu thức P = 2n+1 / n+1
a) Tìm n để P thuộc Z
b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của P
P= \(\frac{2n+1}{n+1}\)= \(\frac{2n+2-1}{n+1}\) = \(\frac{2n+2}{n+1}\) - \(\frac{1}{n-1}\) = 2- \(\frac{1}{n-1}\)
a) Vì 2 thuộc Z nên để P thuộc Z thì \(\frac{1}{n-1}\) phải thuộc Z
=> 1 chia hết cho n-1 => n-1 thuộc Ư(1)={1;-1}
TH1:n-1=1 => n=2
TH2:n-1=-1 => n=0. Vậy n thuộc {2;0}
b) Vì 2 thuộc Z nên để P có GTLN thì -\(\frac{1}{n-1}\) có GTLN => \(\frac{1}{n-1}\) có GTNNTa có: 1 thuộc Z và \(\frac{1}{n-1}\) có GTNN => n-1 là số nguyên âm lớn nhất => n-1=-1 => n=0
Khi đó, P= \(\frac{2.0+1}{0+1}\) = \(\frac{1}{1}\)= 1
Vì 2 thuộc Z nên để P có GTNN thì - \(\frac{1}{n-1}\) có GTNN => \(\frac{1}{n-1}\) có GTLN=> n-1 là số nguyên dương nhỏ nhất => n-1=1 => n=2
Khi đó, P= \(\frac{2.2+1}{2+1}\)= \(\frac{5}{3}\)
P thuộc Z khi: 2n+1 chia hết cho n+1
<=> 2n+2-1 chia hết cho n+1<=> 2(n+1)-1 chia hết cho n+1
<=> 1 chia hết cho n+1 (vì: 2(n+1) chia hết cho n+1)
<=> n+1 E {-1;1} <=> n E {-2;0}. Vậy: n E {-2;0} P/S: E là thuộc nha!
b)\(P=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=2-\frac{1}{n+1}\)
+)P lớn nhất khi n+1 là số nguyên âm lớn nhất => n+1=-1=>n=-2
Thay vào ta được:
\(P_{max}=2-\frac{1}{-1}=2-\left(-1\right)=3\)
+)P nhỏ nhất khi n+1 là số nguyên dương bé nhất=>n+1=1=>n=0
Thay vào ta được:
\(P_{min}=2-\frac{1}{1}=2-1=1\)
tìm giá trị nguyên của m và n để biểu thức
1,P=\(\frac{2}{6-m}\)có giá trị lớn nhất
2, Q=\(\frac{8-n}{n-3}\)có giá trị nguyên nhỏ nhất
1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)
Để P có GTLN thì 6-m đạt giá trị nhỏ nhất
=> 6-m=1
=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất
a)Tìm n thuộc Z để biểu thức sau có giá trị là số nguyên:A=2n-4/2n+1
b)Tính:A=1/1.3+1/3.5+1/5.7+...+1/2021.2023
b) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(=\dfrac{1}{1}-\dfrac{1}{2023}\)
\(=\dfrac{2022}{2023}\)
\(b)\)\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{2023}\)
\(2A=\dfrac{2022}{2023}\)
\(A=\dfrac{2022}{2023}:2\)
\(A=\dfrac{1011}{2023}\)