chứng minh tổng S=(3+3^2+3^4+3^5+3^6+3^7+3^8+3^9) chia hết cho (-39)
giải nhanh hộ mình với : S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9
tính tổng S
Chứng minh S chia hết cho 4
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(3S=3+3^2+3^3+...+3^{10}\\ \Rightarrow3S-S=3+3^2+...+3^{10}-1-3-3^2-...-3^9\\ \Rightarrow2S=3^{10}-1\\ \Rightarrow S=\dfrac{3^{10}-1}{2}\)
Ta có \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)\\ S=\left(1+3\right)\left(1+3^2+...+3^8\right)=4\left(1+3^2+...+3^8\right)⋮4\)
chứng minh rằng s=3+3^2+3^3+3^4 +3^5+3^6+3^7+3^8+3^9 chia hết cho (-39)
AI LÀM ĐÚNG MÌNH TÍCH CHO!
Bài giải
Ta có: S = 3 + 32 + 33 +...+ 37 + 38 + 39
=> S = (3 + 32 + 33) +...+ (37 + 38 + 39)
=> S = 1.(3 + 32 + 33) +...+ (36.3 + 36.32 + 36.33)
=> S = 1.(3 + 32 + 33) +...+ 36.(3 + 32 + 33)
=> S = (3 + 32 + 33).(1 + 33 + 36)
=> S = 39.(1 + 33 + 36) \(⋮\)-39
Vậy S \(⋮\)-39
Chứng minh rằng
a.5^1 - 5^9 + 5^8 chia hết cho 7
b.6 + 6^2 + 6^3 + 6^4 + .........+ 6^9 + 6^10 chia hết cho 7
c.1+2+3+3^2+3^3+....+3^99 chia hết cho 4
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)
\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)
\(5^8-5^7-1\equiv5\left(mod7\right):v\)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)
\(⋮7\)
Cho S = 1+3+3 mũ 2 + 3 mũ 3+ 3 mũ 4+ 3 mũ 5+ 3 mũ 6+ 3 mũ 7+ 3 mũ 8+ 3 mũ 9.Chứng tỏ rằng S chia hết cho 4
b) chứng minh rằng hiệu abc - cba chia hết cho 11 (với a>c)
1.Cho tổng T=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9
Chứng minh T chia hết cho 13
\(T=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(T=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
\(T=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+3^7.\left(1+3+3^2\right)\)
\(T=3.13+3^4.13+3^7.13\)
\(T=13.\left(3+3^4+3^7\right)\)chia hết cho 13
chứng minh s = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 chia hết cho (-39)
\(S=3+3^2+3^3+3^4+...+3^9\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
\(S=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\)
\(S=3\cdot13+3^4\cdot13+3^7\cdot13\)
\(S=13\left(3+3^4+3^7\right)\)
\(S=13\cdot3\left(1+3^3+3^6\right)\)
\(S=39\cdot\left(1+3^3+3^6\right)\)
\(\Rightarrow S\) ⋮ 39
Để chứng minh rằng s = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 chia hết cho (-39), ta sử dụng công thức tổng cấp số cộng:
S = a(1-r^n)/(1-r)
Trong đó:
S là tổng của cấp số cộng
a là số hạng đầu tiên của cấp số cộng
r là công bội của cấp số cộng
n là số lượng số hạng trong cấp số cộng
Áp dụng công thức trên, ta có:
a = 3
r = 3
n = 9
S = 3(1-3^9)/(1-3) = 29,523
Ta thấy rằng S không chia hết cho (-39), do đó giả thiết ban đầu là sai.
S=3(1+3+3^2)+3^4(1+3+3^2)+3^7(1+3+3^2)
=13(3+3^4+3^7)
=39(1+3^3+3^6) chia hết cho -39
Chứng minh rằng:
S=3+ 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 chia hết cho (-39)
Ta có: S = 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39
S = (3 + 32 + 33) + (34 + 35 + 36) + (37 + 38 + 39)
S = 39 + 33(3 + 32 + 33) + 36(3 + 32 + 33)
S = 39 + 33.39 + 36.39
S = 39.(1 + 33 + 36) \(⋮\)-39 (vì 39 \(⋮\)-39)
Cho S=1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9. Hãy chứng minh S chia hết cho 3.
S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+(2^8+2^9)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+2^6.(1+2)+2^8.(1+2)
=1.3+2^2.3+2^4.3+2^6.3+2^8.3
=3.(1+2^2+2^4+2^6+2^8) chia hết cho 3
S=1+2+2^2+2^3+2^4+2^5+2^6+2^7
S= (1+2) + (2^2+2^3) + (2^4+2^5) + (2^6+2^7)
S=3 + 3.4 + 3.16 + 3.64
S=255
Vì 255 chia hết cho 3
=> S sẽ chia hết cho 3
Người lạ ơi bố thí cho tôi ^_^
\(S\) = 1 + 2 + 22+ 23 + 24 + 25 + 26 + 27 + 28 + 29
\(\Rightarrow\)\(S\)= 20 + 21 + 22+ 23 + 24 + 25 + 26 + 27 + 28 + 29
\(\Rightarrow\)\(S\)= ( 20 + 21 ) + ( 22+ 23) + ( 24 + 25 ) + ( 26 + 27 ) + ( 28 + 29 )
\(\Rightarrow\) \(S\)= 20 . ( 20 + 21 ) + 22 . ( 20 + 21 ) + 24 . ( 20 + 21 ) + 26 . ( 20 + 21 ) + 28 . ( 20 + 21 )
\(\Rightarrow\)\(S\)= 20 . 3 + 22 . 3 + 24 . 3 + 26 . 3 + 28 . 3
\(\Rightarrow\)\(S\)= 3 . ( 20 + 22 + 24 + 26 + 28 ) \(⋮\)3 ( đpcm )
Cho tổng S=3^1+3^2+3^3+3^4+3^5+.....+3^99. chứng minh tổng S chia hết cho 39. nhanh gium mình nha
\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)
Vậy S chia hết cho 39