TÌM m thuộc N biết:
102005<2x.5x<102007
Cho A = 102004 +1/102005 +1 và B = 102005 + 1/102006 +1
So sánh A và B
\(10A=10.\dfrac{10^{2004}+1}{10^{2005}+1}=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\\ 10B=10.\dfrac{10^{2005}+1}{10^{2006}+1}=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)
vì \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\Rightarrow10A>10B\Rightarrow A>B\)
A=102004+1/102005+1 và B=102005+1/102006+1
Hãy so sánh A và B
cho A=102004+1/102005+1 và B=102005+1/102006+1
hãy so sánh A và B
Giải:
A=102004+1/102005+1
10A=102005+10/102005+1
10A=102005+1+9/102005+1
10A=1+9/102005+1
Tương tự:
B=102005+1/102006+1
10B=1+9/102006+1
Vì 9/102005+1>9/102006+1 nên 10A>10B
⇒A>B
Chúc bạn học tốt!
Cho A=102004 +1 và B=102005 +1
102005 +1 102006 +1
các bạn trả lời nhanh giùm mình nhé
Ta có: \(10\cdot A=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\)
\(10B=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)
mà \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\)
nên 10A>10B
hay A>B
1.Tìm n thuộc N* biết 2n+1 và 3n+1 là số chính phương.
2.Tìm m,n thuộc N* biết 3m=n2+2n-8
Tìm số cặp x,y,z thuộc N* biết
x+y+z=m (m thuộc N*)
tìm m,n thuộc N , biết 2^m - 2^n= 8
tìm m và n thuộc N*, biết: (10^m)(5^n)=20^n
Tìm m,n thuộc N, biết 2^m-2^n=1984
Dễ thấy m>n>0m>n>0. Ta có 2n(2m−n−1)=19842n(2m−n−1)=1984 . Nhận thấy 2m−n−12m−n−1 lẻ và 2n2n là lũy thừa bậc 2 của một số nguyên dương. Mà khi phân tích 1984=2⋅311984=2⋅31 nên 2n=26⟹n=62n=26⟹n=6 và 2m−n−1=31⟹2m−n=25⟹m−n=5⟹m=112m−n−1=31⟹2m−n=25⟹m−n=5⟹m=11.
k mk nja
tìm m,n thuộc N biết:
(m+1)!+337=n^2