-9^14.25^5.(-8)^7/-18^12.(-625)^3.24^3
A=9^14.25^5.8^7/18^12.(25^2)^3.24^3
Rút gọn phân số
9^14.25^5.8^7 trên 18^12.625^3.24^3
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(=\frac{\left(3^2\right)^{14}.\left(5^2\right)^5.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{12}.3^{24}.5^{12}.2^9.3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{25}.5^{12}}\)
\(=\frac{3^3.1.1}{1.1.5^2}\)
\(=\frac{27}{25}\)
Rút gọn các phân số sau: 9^14.25^5.8^7/18^12.625^3.24^3
Ta có: \(\dfrac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)= \(\dfrac{9^{14}.25^5.8^7}{9^{12}.2^{12}.\left(25^2\right)^3.8^3.3^3}\)=\(\dfrac{9^{12}.9^2.25^5.8^7}{9^{12}.2^{12}.25^6.8^3.3^3}\)
= \(\dfrac{9^{12}.3^4.25^5.8^7}{9^{12}.\left(2^{12}.8^3\right).25^5.25.3^3}\)=\(\dfrac{9^{12}.3^3.3.25^5.8^7}{9^{12}.8^7.25^5.25.3^3}\)=\(\dfrac{\left(9^{12}.3^3.25^5.8^7\right).3}{\left(9^{12}.3^3.25^5.8^7\right).25}\)
=\(\dfrac{3}{25}\)
( Có một vài bước mik làm tắt bặn nhé!)
Rút gọn phân số : \(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(\frac{9^{14}\cdot25^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{\left(3^2\right)^{14}\cdot\left(5^2\right)^5\cdot\left(2^3\right)^7}{\left(3^2\cdot2\right)^{12}\cdot\left(5^4\right)^3\cdot\left(3\cdot2^3\right)^3}\)
\(=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{25}\cdot5^{12}\cdot2^{21}}=\frac{3^3}{5^2}=\frac{27}{25}\)
rut gon: a)999/2610 b)374/506
c)3600-75/8400-175 d)9^14.25^5.8^7/18^12.625^3.24^3
a,999/2610=111/290
b,374/506=17/23
c,3600-75/8400-175=3/7
d,9^14.25^5.8^7/18^12.625^3.24^3=3/25
a, Ta có:999/2610=111/290
b, Ta có:374/506=17/2
c,Ta có:3600-75/8400-175=48.75-75/48.175-175=75.(48-1)/175.(48-1)=75/175=3/7
d, Ta có:(3^2)^14.(5^2)^5.(2^3)^7/(2.3^2)^12.(5^4)^3.(2^3.3)^3
=3^28.5^10.2^21/2^12.3^24.5^12.2^9.3^3
=3^28.5^10.2^21/2^21.3^27.5^12
=3/5^2=3/25
Rut gon phan so sau
\(\frac{9^9.225^5.8^7}{18^{12}.625^3.24^3}\)
\(\frac{9^9\cdot225^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{9^9\cdot\left(\left(3\cdot5\right)^2\right)^5\cdot8^7}{\left(9\cdot2\right)^{12}\cdot\left(\left(5^2\right)^2\right)^3\cdot\left(8\cdot3\right)^3}\)
\(=\frac{1}{9^3\cdot2^{12}}\cdot\frac{9^5\cdot5^{10}}{5^{12}}\cdot\frac{8^7}{8^3\cdot3^3}\)
\(=\frac{9^2\cdot8^4}{2^{12}\cdot5^2\cdot3^3}\)
\(=\frac{9\cdot\left(2^4\right)^3}{\left(2^4\right)^3\cdot5^2}\)
\(=\frac{9}{25}\)
1. Tính
a) \(A=\frac{9^{14}.25^5.8^7}{^{18^{12}.625^3.24^3}}\)
Rút gọn :
A = \(\dfrac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}\)
\(\dfrac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}=\dfrac{\left(3^2\right)^{14}.\left(5^2\right)^6.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)
\(=\dfrac{3^{28}.5^{12}.2^{21}}{2^{21}.3^{27}.5^{12}}=\dfrac{3}{1}=3\)
\(A=\dfrac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}=\dfrac{\left(3^2\right)^{14}.\left(5^2\right)^6.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(3.2^3\right)^3}\)
=\(\dfrac{3^{28}.5^{12}.2^{21}}{2^{12}.3^{24}.5^{12}.3^3.2^9}\)=\(\dfrac{3^{28}.5^{12}.2^{21}}{2^{21}.3^{27}.5^{12}}=3\)
Rút gọn: \(A=\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(\frac{9^{14}}{18^{12}}.\frac{25^5}{625^3}.\frac{8^7}{24^3}\)
\(=\frac{9^{14}}{\left(9.2\right)^{12}}.\frac{25^5}{25^6}.\frac{8^7}{\left(8.3\right)^3}\)
\(=\frac{9^{14}}{9^{12}.2^{12}}.\frac{1}{25}.\frac{8^7}{8^3.3^3}\)
\(=\frac{9^2}{2^{12}}.\frac{1}{25}.\frac{8^4}{3^3}\)
\(=\frac{81}{4096}.\frac{1}{25}.\frac{4096}{27}\)
\(=\frac{81}{4096}.\frac{4096}{27}.\frac{1}{24}=3.\frac{1}{24}=\frac{3}{24}\)
**** **** ****
trả lời
A=3/24
suy ra A=1/8