cho (d): y= -2x+m và (d1):y=(1-m)x+2
1) tìm m để d//d1
2) tìm m để d cắt d1
3) tìm m để d≡d
cho (d): y= -2x+m và (d1):y=(1-m)x+2
a) tìm m để d//d1
b) tìm m để d cắt d1
c) tìm m để d\(\equiv\)d
a: để hai đường thẳng song song thì 1-m=-2
hay m=3
Bài 1: Cho y=(4m+3)x-m+3 (d)
y=(4m-1)x+3m-1 (d1)
a,Tìm m để (d) cắt (d1) tại 1 điểm trên trục tung
b,Tìm m để (d) cắt (d1) tại 1 điểm trên trục hoành
c,Tìm m để (d) và (d1) cắt nhau tại 1 điểm Bài 2: Cho y=(m-1)x+2m-5 (d2) (m khác 1)
a,Tìm m để phương trình đường thẳng (d2) song song với đường thẳng (d3) y=3x+1
b,Tìm m để phương trình đường thẳng (d2) đi qua M(2;1)
c,Vẽ đồ thị của đường thẳng (d2) với giá trị của m tìm được ở câu b. Tính góc tạo bởi đường thẳng vẽ được với trục hoành
Cho các đường thẳng d1 : y = (2m - 1)x - 2m + 5 và d₂ : y = (m + 1)x + m - 1 . a) Tìm m để d1 song song với d₂. B)Tìm m để d1 cắt d2
a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)
=>\(2m-m\ne1+1\)
=>\(m\ne2\)
Cho đường thẳng y=2x + 3 (d) và đường thẳng y= (m+1)x + 5 (d1)
( m là tham số, m khác -1 )
Tìm m để (d) và (d1) cắt nhau tại điểm B nằm bên trái trục tung
Giao của d và d1 là điểm có hoành độ thỏa mãn :
2x + 3 = ( m + 1) x + 5
2x - ( m + 1) x = 5 - 3
x ( 2 - m - 1) = 2
( 1-m) x = 2
x = 2 : ( 1-m) đk m # 1
Để d và d1 cắt nhau về bên trái trục tung thì \(\dfrac{2}{1-m}\) < 0
1- m < 0 => m > 1
cho hsbn y=(m-2)x-2m+1 (m ≠2) có đt (d)
a, tìm m để ( d) cắt trục tung tại điểm có tung độ =11
b, Tìm m để (d) và 2 đường thẳng (d1) y=2x-5 và (d2) y=-3x+10 đồng quy
a: Thay x=0 và y=11 vào (d), ta được:
-2m+1=11
hay m=-5
Cho đường thẳng d:y=(m-2)x+2+m với m là tham số
a.tìm m để d cắt (d1):y=2x-2m+1 tại một điểm trên trục tung
b. tìm m để d cùng các đường thẳng d1:y=x+2 và d2:y=4-3x đồng quy
c. chứng minh d luôn đi qua 1 điểm cố định với mọi m
a: Để (d) cắt (d1) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne2\\-2m+1=m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne4\\-3m=1\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{3}\)
b: Tọa độ giao điểm của d1 và d2 là:
\(\left\{{}\begin{matrix}x+2=4-3x\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}+2=\dfrac{5}{2}\end{matrix}\right.\)
Thay x=1/2 và y=5/2 vào (d), ta được:
\(\dfrac{1}{2}\left(m-2\right)+2+m=\dfrac{5}{2}\)
=>\(\dfrac{1}{2}m-1+m+2=\dfrac{5}{2}\)
=>\(\dfrac{3}{2}m=\dfrac{3}{2}\)
=>m=1
c: (d): y=(m-2)x+m+2
=mx-2x+m+2
=m(x+1)-2x+2
Tọa độ điểm cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x+1=0\\y=-2x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\cdot\left(-1\right)+2=4\end{matrix}\right.\)
cho (p):y=x^2/4 VÀ (d):y=mx+1
a) Tìm m để các đường thẳng (d1):2x-y=-1 và (d2):x+2y=12 và(d) đồng quy tại 1điểm
b) Tìm m để (d) cắt (p) tại 2 điểm pb A và B sao cho diện tích tam giác OAB có GTNN
Ta có:
\(\left(d_1\right):2x-y=-1.\Leftrightarrow2x+1=y.\\ \left(d_2\right):x+2y=12.\Leftrightarrow-\dfrac{1}{2}x+6=y.\)
Xét phương trình hoành độ giao điểm của \(\left(d_1\right);\left(d_2\right):\)
\(2x+1=\dfrac{-1}{2}x+6.\\ \Leftrightarrow\dfrac{5}{2}x=5.\\ \Leftrightarrow x=2.\)
\(\Rightarrow y=5.\)
Thay \(x=2;y=5\) vào \(\left(d\right):\)
\(2m+1=5.\\ \Leftrightarrow m=2.\)
Vậy \(m=2\) thì \(\left(d\right);\left(d_1\right);\left(d_2\right)\) đồng quy tại 1 điểm.
Cho đường thẳng (d1): y= (m-1).x + 2m+1
a) Tìm m để (d1) cắt trục tung tại điểm có tung độ bằng -3. Vẽ đồ thị với m vừa tìm được và chứng tỏ giao điểm của đường thẳng vừa tìm được với (d): y= x+1 nằm trên trục hoành
b) Tìm m để khoảng cách từ O đến (d1) đạt giá trị lớn nhất
mn giúp mk vs ! mk đang cần gấp
a: Thay x=0 và y=3 vào (d1), ta đc:
2m+1=3
=>2m=2
=>m=1
(d1): y=3
=>giao của (d1) với (d) nằm trên trục hoành
b: \(h\left(O;d1\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{\left|2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}\)
Để h lớn nhất thì m=1
Cho hai đường thẳng (d1 ) : y = (m +1)x + m+3 và (d2 ) : y= (2m+1)x-m+3 với m khác 0. Tìm tất cả các giá trị m (m khác 0) để (d1) và (d1) cắt nhau tại điểm M sao cho M nằm trên đường thẳng (d): y=x