Gía trị của x thỏa mãn \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
#HOÀNG PHÚC giúp câu này nhanh với
Gía trị x>0 thỏa mãn:
\(\frac{9}{\left(x+2\right)\left(x-1\right)}=\frac{4}{3}\)
Gía trị x>o thỏa mãn : \(\frac{x}{\frac{3}{50}}\)= \(\frac{\frac{2}{3}}{x}\) là x .......
Cho các số thực x,y,z thỏa mãn \(x+y+z=1\) và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\)1 Gía trị của biểu thức \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
...
=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)
=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)
=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Nhân hai tổng đó lại được tích bằng 1. Nhóm ba phân thức cần tìm thành một nhóm, các phân thức còn lại nhóm và rút gọn được x + y + z = 1 nên tổng cần tìm bằng 0 bạn à!
Gía trị của x thỏa mãn:
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\frac{37-x}{x+13}=\frac{3}{7}\)
=>7.(37-x)=3.(x+13)
<=>259-7x=3x+39
<=>3x+7x=259-39
<=>10x=220
<=>x=22
\(\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow\left(37-x\right).7=\left(x+13\right).3\Leftrightarrow259-7x=3x+39\)(nhân chéo)
\(\Leftrightarrow3x+7x=259-39\Rightarrow10x=220\Rightarrow x=220:10\Rightarrow x=22\)
Vậy x=22
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Leftrightarrow\left(37-x\right).7=\left(x+13\right).3\)
\(\Leftrightarrow259.x-7=3.x-39\)
\(\Leftrightarrow3x+7x=259-39\)
\(\Leftrightarrow10.x=220\)
\(\Leftrightarrow x=220:10\)
\(\Leftrightarrow x=22\)
~AI NHÌN THẤY TÔI XIN HÃY ĐỂ LẠI ~
Giá trị của x thỏa mãn \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
Gía trị của x thỏa mãn \(\frac{0,2x}{3}=0,\left(6\right):\frac{1}{4}\) là x = ?
- Chỉ cần kết quả
Cho x #0, y#0 thỏa mãn : x + y = 4, x.y=2
Gía trị của biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\) là A = ........
Nhanh nha cần gấp, chỉ cần kết quả thôi cũng được
\(A=\frac{\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]}{\left(xy\right)^3}=\frac{4.\left(16-6\right)}{8}=5\)
1) Gía trị của x<0 thoả mãn (x+1)(x+2)(x+3)(x+4)=24
2) Tìm gía trị lớp nhất của biể thức \(P=\frac{8x+12}{x^2+4}\)
Giai3 giùm mik nha, bài nào cũng dc
Tìm giá trị nguyên của x thỏa mãn:
2.22.23.24....2x=32768
Tìm bậc của đơn thức
\(\frac{1}{2}x^2y^5z^3\)
Tìm giá trị x>0 thỏa mãn:
\(\frac{x}{4}=\frac{9}{x}\)
Tìm giá trị x<0 thỏa mãn:
\(\text{|}2x-\frac{1}{2}\text{|}+\frac{3}{7}=\frac{38}{7}\)
\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)
\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)
\(\Leftrightarrow1+2+3+4+..+x=15\)
\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)
\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)
Vậy x=5
Bài 2:
Bậc của đơn thức là 2+5+3=10
Bài 3:
\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)
+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành
\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)
+)TH2: \(x< \frac{1}{4}\) thì pt trở thành
\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)
Vậy x={-9/4;11/4}