Tìm GTNN và GTLN của:
A= 2n-1/n-3
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
tìm GTNN và GTLN của
(2n-1)/(n-3)
Tìm GTLN và GTNN của biểu thức \(\dfrac{5n+2}{2n+1}\) với \(n\in N\)*
Lời giải:
$\frac{5n+2}{2n+1}=\frac{2,5(2n+1)-0,5}{2n+1}=2,5-\frac{0,5}{2n+1}$
Để $\frac{5n+2}{2n+1}$ lớn nhất thì $\frac{0,5}{2n+1}$ nhỏ nhất
$\Leftrightarrow 2n+1$ lớn nhất
$\Leftrightarrow n$ lớn nhất. Trong tập số tự nhiên thì không tồn tại số tự nhiên lớn nhất nên không có GTLN
Để $\frac{5n+2}{2n+1}$ nhỏ nhất thì $\frac{0,5}{2n+1}$ lớn nhất
$\Leftrightarrow 2n+1$ nhỏ nhất $\Leftrightarrow n$ nhỏ nhất
Với $n\in\mathbb{N}^*$ thì $n$ nhỏ nhất bằng $1$
$\Rightarrow \frac{5n+2}{2n+1}$ min $=\frac{5.1+2}{2.1+1}=\frac{7}{3}$
TÌM GTLN,GTNN CỦA:
A=\(2x^2-6x\)
B=\(2x^2-4xy+y^2+6x-10\)
\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
cho A= 4n+1/ 2n+3 ( n thuộc Z)
a) tìm n thuộc Z để A thuộc 2
b) Tìm A để A đạt GTNN và GTLN
a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3
Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 4n - 6 chia hết cho 2n + 3
=> -5 chia hết cho 2n + 3
=> 2n + 3 thuộc {-1; 1; -5; 5}
=> 2n thuộc {-4; -2; -8; 2}
=> n thuộc {-2; -1; -4; 1}
b, Ta có:
\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
+ Lớn nhất xét tương tự
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:
Cho A = 4n+1/2n+3 tìm n ϵ Z để :
a) A có GTLN
b) A có GTNN
Tìm n để
2n mũ 2+n+4/2n+1
a,đạt GTLN
b,đạt GTNN
c A nguyên
cho A= 4n+1/ 2n+3 ( n thuộc Z)
a) tìm n thuộc Z để A thuộc 2
b) Tìm A để A đạt GTNN và GTLN