a, ( x + 1 ).( x - y ) = 3
b, x.y - 3.x + y = 8
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-11;1\right)\right\}\)
a: (x,y)∈{(−9;1);(−1;9);(−3;3)}(x,y)∈{(−9;1);(−1;9);(−3;3)}
b: (x,y)∈{(1;7);(−7;−1)}(x,y)∈{(1;7);(−7;−1)}
c: (x,y)∈{(11;−1);(−11;1)}
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)
Tìm số tự nhiên x,y biết : a, (x-4)(y+1) = 8 b, (2x+3)(y-2) = 15 c, x.y + 2x + y = 12 d, x.y - x - 3y = 4
Làm hộ mik nhé, mk đag cần gấp :'((((
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
Tìm x,y thuộc Z biết
a) x.y=5
b) (x+1). y=5
c) x.y+y-5=0
d) (x+y) . (y+1)=0
e) x.(y+1)+y.(y+1)=3
f)x.y+x+y^2+y-7=0
g) (x+2).(y-3)=5
cứu tui !!!!
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
Bài 1: Tìm x,y thuộc Z:
1, x.(y-2)+y=8
2, x.(y-3)+2.y=9
3, x.(2.y-1)+y=10
4, x.y+x+y=11
5,2.x.y+x-y=12
1) x.(y - 2) + (y - 2) = 6
=> (x + 1)(y - 2) = 6 = 1 . 6 = 6. 1 = -1 . (-6) = -6 . (-1) = 2 . 3 = 3 . 2 = -2 . (-3) = (-3) . (-2)
Lập bảng :
x + 1 | 1 | -1 | 6 | -6 | 2 | -2 | 3 | -3 |
y - 2 | 6 | -6 | 1 | -1 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 5 | -7 | 1 | -3 | 2 | -4 |
y | 8 | -4 | 3 | 1 | 5 | -1 | 3 | 1 |
Vậy ...
1, x.(y+1)+2.(y+1)=7
(x+2).(y+1)=7
Ta có bảng
x+2 | 1 | -1 | 7 | -7 |
y+1 | 7 | -7 | 1 | -1 |
x | -1 | -3 | 5 | -9 |
y | 6 | -8 | 0 | -2 |
Vậy ...
bài 5: tìm x, y, z bt:
a, x/8 = y/12 vs x + y = 60
b, x/3 = y/6 vs x.y = 162
c, x/y = 2/5 vs x.y = 40
d, x/7 = y/6, y/8 = z/5 vs x + y - z = 37
e, 10x = 15y = 21z vs 3x - 5z + 7y = 37
a) Ta có hệ phương trình:
x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:
x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:
x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:
x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:
10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.
tìm các số x,y nguyên ,biết:
a)x.y=5
b)x.y=5 và x>y
c)(x+1).(y-2)=-5
d)x.y=-3
e)x.y=-3 và x<y
g)(x-1).(y+1)=-3
a, \(xy=5\)hay \(x;y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x | 1 | -1 | 5 | -5 |
y | 5 | -5 | 1 | -1 |
c, \(\left(x+1\right)\left(y-5\right)=-5\)hay \(x+1;y-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng, tương tự với mấy bài khác chỉ khác nó có điều kiện thì xét nó rồi kết luận nhé!
trả lời ngay cho mình nhé
bài 1 tìm x thuộc Z
a) x^2+2.x=0
b) (-2.x).(-4.x)+28=100
c) 5.x.(-x)^2+1=6
d) 3.x^2+12.x=0
e) 4.x.3=4.x
bài 2: tìm x,y thuộc Z
a) (x+2).(x-1)=0
b) (y+1).(x.y-1)=3
c) 2.x.y+x-6.y=15
d) x.y+2.x-y+9
e)3.x.y-y=-12
g) 3.x.y-3.x-y=0
h) 5.x.y+5.x+2.y =-16
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
d, 3\(x^2\) + 12\(x\) = 0
3\(x.\left(x+4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 0}
e, 4.\(x.3\) = 4.\(x\)
12\(x\) - 4\(x\) = 0
8\(x\) = 0
\(x\) = 0
Tìm số tự nhiên x,y biết
1) (x-4).(y+1)=8
2)(2x+3).(y-2)=15
3) x.y+2x +y=12
4)x.y -x-3y=4
1) \(\left(x-4\right)\left(y+1\right)=8\)
Do \(y\)là số tự nhiên nên \(y+1\ge1\)nên
ta có bảng giá trị:
x-4 | 1 | 2 | 4 | 8 |
y+1 | 8 | 4 | 2 | 1 |
x | 5 | 6 | 8 | 12 |
y | 7 | 3 | 1 | 0 |
2) \(\left(2x+3\right)\left(y-2\right)=15\)
Có \(x\)là số tự nhiên nên \(2x+3\ge3\). Ta xét bảng giá trị:
2x+3 | 3 | 5 | 15 |
y-2 | 5 | 3 | 1 |
x | 0 | 1 | 6 |
y | 7 | 9 | 3 |
3) \(xy+2x+y=12\)
\(\Leftrightarrow x\left(y+2\right)+y+2=14\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=14\)
Tiếp tục bạn làm tương tự 1) và 2).
4) \(xy-x-3y=4\)
\(\Leftrightarrow y\left(x-3\right)-x+3=7\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=7\)
Tiếp tục bạn làm tương tự 1) và 2).