Tìm các số nguyên tố x, y sao cho: x2 + 117 = y2
Bài 1:
a) Tìm các số tự nhiên n sao cho 3n+10 chia hết cho n+2
b) Tìm các số nguyên tố x,y sao cho x2+117=y2
a:
b: \(x^2+117=y^2\)
=>\(x^2-y^2=-117\)
=>\(\left(x-y\right)\left(x+y\right)=-117\)
\(Ư\left(-117\right)=\left\{1;-1;3;-3;9;-9;13;-13;39;-39;117;-117\right\}\)
=>\(-117=1\cdot\left(-117\right)=\left(-1\right)\cdot117=3\cdot\left(-39\right)=\left(-3\right)\cdot39=\left(9\right)\cdot\left(-13\right)=\left(-9\right)\cdot13\)
TH1: x-y=1 và x+y=-117
=>2x=-116 và x-y=1
=>x=-58(loại)
TH2: x-y=-1 và x+y=117
=>2x=118 và x-y=-1
=>x=59 và y=59+1=60(loại)
TH3: x-y=-3 và x+y=39
=>2x=42 và x-y=-3
=>x=21(loại)
TH4: x-y=3 và x+y=-39
=>2x=-42 và x-y=3
=>x=-21(loại)
TH5: x-y=9 và x+y=-13
=>2x=-4 và x-y=9
=>x=-2(loại)
TH6: x-y=-9 và x+y=13
=>2x=4 và x-y=-9
=>x=2 và y=2+9=11
=>Nhận
Vậy: x=2 và y=11
a) Tìm x,y nguyên biết: 2x(3y-2)+(3y-2)=-55
b) tìm các số nguyên tố x,ysao cho x2+117=y2
c)chúng tỏ rằng nêu p là số nguyên tố lớn hơn 3 thì p2-1 cgia hết cho 3
Tìm các số nguyên tố x, y sao cho x2 + 45 = y2
Tham khảo:https://olm.vn/hoi-dap/detail/81346038854.html
1.Tìm x để:(7x-11)3=25.52+200
2.Tòm các số nguyên tố x;y sao cho:x2+117=y2
Bài 1:
\(\Leftrightarrow\left(7x-11\right)^3=32\cdot25+200=1000\)
=>7x-11=10
=>7x=21
hay x=3
Tìm các số nguyên tố x,y . Biết:
x2 + 117 = y2
Ta có :
Với x chẵn => x = 2 => 22 + 117 = y2
=> 121 = y2 => 112 = y2 => y = 11 (thoả mãn)
Với x lẻ => x2 cũng lẻ => x2 + 117 chẵn và x > 2
=> y2 chẵn => y = 2
Mà x < y => ko thoả mãn
Vậy x = 2 ; y = 11
Tìm các số nguyên tố x,y sao cho: x^2 + 117=y^2
ta có ; -nếu y2 là số chẵn mà y là số nguyên tố =>y=2
=>x2 +117 =22 =4( vô lý)
=>y2 là số lẻ mà 117 là số lẻ =>x2 là số nguyên tố chẵn => x=2
thay vào ta có :
22 +117 =y2 =>121 = y2 =>112 =y2 =>y=11
vậy x=2 ; y=11
Tìm các số nguyên tố x,y sao cho x^2+117=y^2
Mình thì có cách này, không biết có đúng không nữa:
Giải: Ta có các số nguyên tố như sau: 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; ...
Theo đề, ta thay lần lượt các số nguyên tố vào x và y :
- Nếu x bằng 2 thì 22 + 117 = 121. Mà 121 = \(11^2\) (chọn)
- Nếu x bằng 3 thì 32 + 117 = 126 Mà 126 = 2.\(3^2\).7 (loại) => Nếu ta thay các số khác vào x và y sẽ không bằng \(x^2\) và \(y^2\)
Vậy: Hai số nguyên tố x,y là 2 và 11.
Đúng thì chọn mình nhé! Tốt nhất là bạn hãy thử lại nữa đấy!
Tìm các số nguyên tố x, y sao cho: x^2 + 117 = y^2
Mình thì có cách này, không biết có đúng không nữa:
Giải: Ta có các số nguyên tố như sau: 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; ...
Theo đề, ta thay lần lượt các số nguyên tố vào x và y :
- Nếu x bằng 2 thì 22 + 117 = 121. Mà 121 = \(11^2\) (chọn)
- Nếu x bằng 3 thì 32 + 117 = 126. Mà 126 = 2.32.7 (loại) => Nếu ta thay các số khác vào x và y sẽ không bằng \(x^2\) và \(y^2\).
Vậy: Hai số nguyên tố x,y là 2 và 11.
Nếu bạn cảm thấy đúng thì (k) cho mình nhé!
Hai số nguyên tố x,y lần lượt là 2 và 11
Tìm các số nguyên tố x,y sao cho: x^2 + 117=y^2
x2 + 117 = y2
Dễ thấy: y2 > 117
=> y > 10
Do y nguyên tố nên y lẻ => y2 lẻ
Mà x2 + 117 = y2 nên x2 chẵn => x chẵn
Mà x nguyên tố nên x = 2
Thay vào đề bài ta có: 22 + 117 = y2
=> 121 = y2 = 112
=> y = 11 (thỏa mãn)
Vậy x = 2; y = 11