\(\frac{45}{78}+\frac{72}{88}+\frac{93}{55}\)
tìm x biết \(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+\frac{x}{28}+\frac{x}{36}+\frac{x}{45}+\frac{x}{55}+\frac{x}{66}+\frac{x}{78}+\frac{x}{78}=\frac{220}{39}\)
\(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+\frac{x}{28}+\frac{x}{36}+\frac{x}{45}+\frac{x}{55}+\frac{x}{66}+\frac{x}{78}+\frac{x}{78}=\frac{220}{39}\)
\(\Leftrightarrow x\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+\frac{1}{78}+\frac{1}{78}\right)=\frac{220}{39}\)
\(\Leftrightarrow x\cdot\frac{20}{39}=\frac{220}{39}\Rightarrow x=11\)
\(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+\frac{x}{28}+\frac{x}{36}+\frac{x}{45}+\frac{x}{55}+\frac{x}{66}+\frac{x}{78}+\frac{x}{78}=\frac{220}{39}\)
\(=>x=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+\frac{1}{78}+\frac{1}{78}=\frac{220}{39}\)
\(x\cdot\frac{20}{39}=\frac{220}{39}\)
\(x=\frac{220}{39}:\frac{20}{39}=11\)
\(ChoB=\left(80-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{80}{88}\right):\left(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{440}\right)\)
\(80-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{80}{88}=\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{80}{88}\right)\)
\(=\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{88}=8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{88}\right)\)
\(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{440}=\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{88}\right)\)
=>B=8:1/5=40
Điền dấu <, >, = thích hợp vào chỗ chấm:
34 ... 50 47 ... 45 55 ... 66
78...69 81...82 44...33
72...81 95...90 77...99
62...62 61...63 88...22
34 < 50 47 > 45 55 < 66
78 > 69 81< 82 44 > 33
72 < 81 95 > 90 77 < 99
62 = 62 61 < 63 88 > 22
Giải phương trình sau
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\Rightarrow\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
\(\Rightarrow\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
\(\Rightarrow\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
\(\Rightarrow x-100=0\).Do \(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\ne0\)
\(\Rightarrow x=100\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{x-45}{55}-1-\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
\(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
\(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
(x-100)(\(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}=0\)
-> x-100 = 0 -> x = 100
mà \(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\) khác 0
Vậy x = 100
Giải phương trình
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\Leftrightarrow\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
\(\Leftrightarrow\frac{x-45-55}{55}+\frac{x-47-53}{47}-\frac{x-55-45}{45}-\frac{x-53-47}{47}=0\)
\(\Leftrightarrow\frac{x-100}{55}+\frac{x-100}{47}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
Vậy pt có tập nghiệm S = { 100 }
giải phương trình sau 
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
dễ thôi mà
Áp dụng tỉ lệ thức, ta có:
\(\Leftrightarrow\frac{108x-4970}{2915}=\frac{92x-4970}{2115}\Rightarrow\left(108x-4970\right)2115=2915\left(92x-4970\right)\)
=>x=100
Ông Thắng: làm kiểu đó chưa gọi là đúng hoàn toàn đâu
$\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}$x−4555 +x−4753 =x−5545 +x−5347
=> x = 100
\(Q=\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
Q=\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{89}{90}\)
Q=\(Q=\frac{5}{2.3}+\frac{11}{3.4}+\frac{19}{4.5}+\frac{29}{5.6}+\frac{41}{6.7}+\frac{55}{7.8}+\frac{71}{8.9}+\frac{89}{9.10}\)
Q=
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=1+1+...+1-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
\(A=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)=9-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9-\left(1-\frac{1}{10}\right)=9-1+\frac{1}{10}=8\frac{1}{10}\)
88-\(\frac{1}{6}\)-\(\frac{2}{7}\)-\(\frac{3}{8}\)-.......-\(\frac{88}{93}\)
-\(\frac{1}{12}\)-\(\frac{1}{14}\)-\(\frac{1}{16}\)-......-\(\frac{1}{186}\)
giải theo cách hợp lí