5n+34 chia hết cho n+7
Tìm n để:
a)13 chia hết cho 4n-5
b)4n-5 chia hết cho 13
c)5n+1 chia hết cho 7
d)7 chia hết cho 5n+1
13 chia hết cho 4n - 15
=> 4n - 15 thuộc Ư(13) = {1;13}
=> 4n = 16;28
=> n = 4;7
- n - 5 chia hết n + 2
3n - 1 chia hết 5n + 2
n2 + 5n - 7 chia hết cho n + 5
Ta có :
\(-n-5=-n-2-3=-\left(n+2\right)-3\) chia hết cho \(n+2\)\(\Rightarrow\)\(\left(-3\right)⋮\left(n+2\right)\)\(\Rightarrow\)\(\left(n+2\right)\inƯ\left(-3\right)\)
Mà \(Ư\left(-3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n+2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(-1\) | \(-3\) | \(1\) | \(-5\) |
Vậy \(n\in\left\{-1;-3;1;-5\right\}\)
Tìm n để:
a)13 chia hết cho 4n-5
b)4n-5 chia hết cho 13
c)5n+1 chia hết cho 7
d)7 chia hết cho 5n+1
3n+7 chia hết cho n
27-5n chia hết cho n
3n+7 chia hết cho n
Vì 3n chia hết cho n
=>7 chia hết cho n
=> n thuộc Ư(7)
=> n thuộc {1; -1; 7; -7}
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
Tìm n thuộc N để a) (n+4) chia hết cho n b) (3n+7) chia hết cho n c) (27 - 5n) chia hết cho n
1. Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x+3 chia hết cho 7
2. Chứng minh rằng 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5n-1 chia hết cho 31
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31
tìm n thuộc N
n +4 chia hết cho n
3n +7 chia hết cho n
27 -5n chia hết cho n
3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
a)\(n+4⋮n\)
Vì \(n⋮n\)
Nên \(4⋮n\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Vậy \(n\in\left\{1;2;4\right\}\)
b) \(3n+7⋮n\)
Vì \(3n⋮n\)
Nên \(7⋮n\Rightarrow n\in\left(7\right)=\left\{1;7\right\}\)
Vậy \(n\in\left\{1;7\right\}\)
c) \(27-5n⋮n\)\(\left(0< n\le5\right)\)
Ta có : \(5n⋮n\Rightarrow\)phép chia này có số dư bằng 0
Đây là công thức chia hết nè mk chỉ bổ sung thôi chứ trong bài làm bạn đừng ghi thế này nha :
\(a⋮n;b⋮n\left(a\ge b;a\le b\right)\)thì \(a-b;b-a⋮n\)có nghĩa là cùng số dư nha bạn
Mà ta có 5n chia hết cho n
Nên \(27⋮n\Rightarrow n\inƯ\left(27\right)=\left\{1;3;9;27\right\}\)
Mà vì đầu đề bài điều kiện ta cho là \(0< n\le5\)
Nên \(n\in\left\{1;3\right\}\)
n + 4 chia hết cho n
vì n chia hết cho n
nên 4 chia hết cho n -> n thuộc Ư(4) = (1;2:4)
3n + 7 chia hết cho n
Vì 3n chia hết cho n
Nên 7 chia hết cho n-> n thuộc (7) = (1;7)
27- 5n chia hết cho n( 0 < n<5)
27- 5n chia hết cho n-> phép chia này có số dư bằng 0
A chia hết cho n, b chia hết cho n (a lớn hơn hoặc bằng b; a bé hơn hoặc bằng b)
Thì a – b; b – a thuộc n
Mà ta có 5n chia hết chon
Nên 27 chia hết cho n ->n thuộc Ư(27) = ( 1;3;9;27)
Mà 0 <n<5
Nên n thuộc (1;3)