Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Tiến Duy
Xem chi tiết
Thiếu Gia Họ Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 19:47

\(\widehat{B}=48^0\)

\(BC\simeq31,38\left(cm\right)\)

Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2023 lúc 21:33

a: Xét ΔIMB vuông tại M và ΔIKC vuông tại K có

góc MIB=góc KIC

=>ΔIMB đồng dạng vơi ΔIKC

=>IM/IK=IB/IC

=>IM*IC=IB*IK

b: Xét ΔIMA vuông tạiM và ΔIEC vuông tại E có

góc MIA=góc EIC

=>ΔIMA đồng dạng với ΔIEC

=>IM/IE=IA/IC

=>IM*IC=IA*IE

c: Xét ΔAKI vuông tại K và ΔAEC vuông tại E có

góc KAI chung

=>ΔAKI đồng dạng với ΔAEC

=>AK/AE=AI/AC

=>AK*AC=AE*AI

d: Xet ΔAKB vuông tại K và ΔAMC vuông tại M có

góc KAB chung

=>ΔAKB đồng dạng với ΔAMC

=>AK/AM=AB/AC

=>AK*AC=AM*AB

anh cường chu
Xem chi tiết
Tt_Cindy_tT
17 tháng 4 2022 lúc 9:50

A C B M N D

a, Áp dụng Đ. L. py-ta-go vào tg ABC cân tại A, có:

BC2=AC2+AB2

=>152=AC2+92

     225=AC2+81

=>AC=225-81

         =144.

=>AC=12cm.

b, Xét tg ABM và tg NCM, có: 

MB=MC(M là trung điển của BC)

góc AMB= góc CMN(đối đỉnh)

AM=NM(gt)

=>tg ABM= tg NCM(c. g. c)

=>góc ABM= góc NCM(2 góc tương ứng)

c, Ta có: góc BAC+ góc DAC=180o

                 =>góc DAC= 180o- góc BAC 

                                   =180o-90o

                                   =90o

Xét tg ACB và tg ACD, có: 

AB=AD(A là trung điểm của BC)

góc BAC = góc DAC(=90o)

AC chung

=>tg ABC= tg ADC(2 cạnh góc vuông)

=>BC=DC(2 cạnh tương ứng)

=>tg CBD cân tại C(đpcm)

8.nguyễn minh huy
Xem chi tiết
08.Bảo Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 21:50

loading...

Thảo Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 23:28

a: \(DF=\dfrac{EF^2}{IF}=15\left(cm\right)\)

Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 11 2023 lúc 17:57

1: y=(m+5)x+2m-10

=>(m+5)x-y+2m-10=0

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m+5\right)+0\cdot\left(-1\right)+2m-10\right|}{\sqrt{\left(m+5\right)^2+\left(-1\right)^2}}=\dfrac{\left|2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}\)

Để d(O;(d))=1 thì \(\dfrac{\left|2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}=1\)

=>\(\sqrt{\left(m+5\right)^2+1}=\left|2m-10\right|=\sqrt{4m^2-40m+100}\)

=>\(4m^2-40m+100=m^2+10m+26\)

=>\(3m^2-50m+74=0\)

=>\(m=\dfrac{25\pm\sqrt{403}}{3}\)

2: Gọi A,B lần lượt là tọa độ giao điểm của (d) với trục Ox,Oy

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m+5\right)x+2m-10=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\left(m+5\right)x=-2m+10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-2m+10}{m+5}\end{matrix}\right.\)

=>\(OA=\left|\dfrac{-2m+10}{m+5}\right|=\left|\dfrac{2m-10}{m+5}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+5\right)x+2m-10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=0\cdot\left(m+5\right)+2m-10=2m-10\end{matrix}\right.\)

=>OB=|2m-10|

ΔOAB vuông tại O

=>\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{\left|2m-10\right|}{\left|m+5\right|}\cdot\left|2m-10\right|\)

\(=\dfrac{\left|\left(m-5\right)\left(2m-10\right)\right|}{\left|m+5\right|}=\left|\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}\right|\)

\(S=3\) khi \(\left|\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}\right|=3\)

=>\(\left[{}\begin{matrix}\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}=3\\\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-10m-10m+50=3m+15\\2m^2-20m+50=-3m-15\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-20m+50-3m-15=0\\2m^2-20m+50+3m+15=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-23m+35=0\\2m^2-17m+65=0\end{matrix}\right.\)

=>\(m\in\left\{\dfrac{23\pm\sqrt{249}}{4}\right\}\)

Nguyễn Duy Hưng
Xem chi tiết
Homin
1 tháng 12 2021 lúc 20:31

Xét ΔMAE và ΔMCB có:

         MA = MC (M là trung điểm của AC)

          ∠AME = ∠CMB (2 góc đối đỉnh)

          ME = MB (gt)

⇒ ΔMAE = ΔMCB (c.g.c)

⇒ AE = BC (2 cạnh tương ứng) (1)

Xét ΔNAF và ΔNBC có:

      NA = NB (N là trung điểm của AB)

      ∠ANF = ∠BNC (2 góc đối đỉnh)

       NF = NC (gt)

⇒ ΔNAF = ΔNBC (c.g.c)

⇒ AF = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) ⇒ AE = AF

Ta có: ΔMAE = ΔMCB (cmt)

⇒ ∠MAE = ∠MCB (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)

Ta có: ΔNAF = ΔNBC (cmt)

⇒ ∠NAF = ∠NBC (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)

Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng