Cho nửa đường tròn tâm O đường kính AB.Một điểm C cố định thuộc đoạn thẳng AO (C khác A,O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M(M khác B và D).Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1) chứng minh EM=EF
2)Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo góc không đổi khi M di chuyển trên cung BD.