Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN Thanh Mai
Xem chi tiết
danvi
1 tháng 10 2017 lúc 19:27

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

thtyygffgy
22 tháng 2 2023 lúc 20:01

tự lực mà làm mn đừng chỉ

 

Nancy Jewel McDonie
Xem chi tiết
Kiên-Messi-8A-Boy2k6
12 tháng 6 2018 lúc 15:52

\(S=5+5^2+5^3+....+5^{2006}\)

\(\Rightarrow5S=5^2+5^3+5^4+....+5^{2007}\)

\(\Rightarrow5S-S=\left(5^2+5^3+5^4+...+5^{2007}\right)-\left(5+5^2+5^3+....+5^{2006}\right)\)

\(\Rightarrow4S=5^{2007}-5\)

\(\Rightarrow S=\frac{5^{2007}-5}{4}\)

Nancy Jewel McDonie
12 tháng 6 2018 lúc 15:53

Mình cần câu a hơn là cần câu b. Các bạn giúp mình nha. Cảm ơn nhiều <3

Cao Thu Trang
Xem chi tiết
Nguyễn Minh Quang
10 tháng 1 2021 lúc 21:58

Ta có 

\(5S=5^2+5^3+..+5^{2007}=\left(5+5^2+5^3+..+5^{2006}\right)+5^{2007}-5\)

hay \(5S=S+5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)

mà 

\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)..+\left(5^{2001}+5^{2004}\right)+\left(5^{2005}+5^{2006}\right)\)

hay \(S=126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}+6.5^{2005}\)

mà rõ ràng \(126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}\)chia hết cho 126

còn \(6.5^{2005}\) không chia hết cho 126 nên S không chia hết cho 126.

Khách vãng lai đã xóa
Nguyễn Ngọc Lan
Xem chi tiết
Nguyễn Quang Đức
12 tháng 11 2016 lúc 20:25

ko chia hết được bán nhé nên không chứng minh được

Đinh Đức Hùng
12 tháng 11 2016 lúc 20:30

Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )

                = 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )

                = 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )

                = 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126

                = 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126

=> A ⋮ 126 ( đpcm )

Nguyễn Thị Bích Ngọc
30 tháng 1 2019 lúc 21:26

Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )

                = 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )

                = 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )

                = 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126

                = 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126

=> A ⋮ 126 ( đpcm )

Đặng Quốc Huy
Xem chi tiết
svtkvtm
22 tháng 3 2019 lúc 20:21

Vì S có 2006 số hạng nên ta chia S thành 334 nhóm mỗi nhóm có 6 số hạng và còn thừa 2 số hạng như sau:

S=5+52+[(53+56)+(54+57)+(55+58)]+.......+[(52001+52004)+(52002+52005)+(52003+52006)]=30+[53(1+125)+54(1+125)+55(1+125)]+.....+[52001(1+125)+52002(1+125)+52003(1+125)]=30+53.126+54.126+55.126+....+52001.126+52002.126+52003.126

=30+126(53+54+55+......+52001+52002+52003)=>S chia 126 dư 30

=> S không chia hết cho 126 (đpcm)

Nhi Nhi 2004
Xem chi tiết
Nguyễn Thị Thanh Thảo
9 tháng 2 2016 lúc 16:44

5+5^2+5^3+...+5^2006=(5+5^4)+(5^2+5^5)+(5^3+5^6)+...+(5^2003+5^2006).                                                                      =5.(1+5^3)+5^2.(1+5^3)+5^3.(1+5^3)+...+5^2003.(1+5^3).                                                               

= 5.126+5^2.126+5^3.125+...+5^2003.126

=126.(5+5^2+5^3+...+5^2003)chia hết cho 126. Vậy 5+5^2+5^3+...+5^2006 chia hết cho 126

Võ Xuân Trường
Xem chi tiết
Nguyễn Thị Ghost
Xem chi tiết
Hằng Phạm
14 tháng 2 2016 lúc 23:26

b, ( 5^1 + 5^4 ) + ( 5^2 + 5^5 ) + .... + ( 5^2003 + 5^2006 ) 
= 5( 1 + 5^3 ) + 5^2( 1 + 5^3 ) + .... + 5^2003( 1 + 5^3 ) 
= 5 . 126 + 5^2 . 126 + .... + 5^2003 . 126 
= 126 ( 5 + .... + 5^2003 ) 
=> chia hết cho 126

Hằng Phạm
14 tháng 2 2016 lúc 23:16

a ) S = 5 + 52 + .... + 52006
5S = 52 + 53 + ..... + 52007
4S = 5S - S = 52007 - 5 
=> S = \(\frac{5^{2007}-5}{4}\)
b thì bạn gộp lại nhé , nếu k giải đk ib cho mình 

nguyen van ngheo
2 tháng 2 2017 lúc 19:54

a hi hi thay hay thi cai nha

animeboy
Xem chi tiết
Thanh Tùng DZ
3 tháng 6 2017 lúc 17:13

a) Ta có : S = 5 + 52 + 53 + ... + 52006

5S = 52 + 53 + 5+ ... + 52007

5S - S = ( 52 + 53 + 54 + ... + 52007 ) - ( 5 + 52 + 53 + ... + 52006 )

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

b) Lại có : S = 5 + 52 + 53 + ... + 52006

S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + ... + ( 52003 + 52006 )

S = 5 . ( 1 + 53 ) + 52 . ( 1 + 53 ) + 53 . ( 1 + 53 ) + ... + 52003 . ( 1 + 53 )

S = 5 . 126 + 52 . 126 + 53 . 126 + ... + 52003 . 126

S = 126 . ( 5 + 52 + 53 + ... + 52003 ) \(⋮\)126     ( đpcm )

l҉o҉n҉g҉ d҉z҉
3 tháng 6 2017 lúc 17:12

Ta có : S = 5 + 5+ 53 + ...... + 52006

=> 5S = 5+ 53 + ...... + 52007

=> 5S - S = 52007 - 5 

=> 4S = 52007 - 5 

=> S = \(\frac{5^{2007}-5}{4}\)

Trương Nhật Linh
3 tháng 6 2017 lúc 17:19

a)     S = 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 2006

     5.S = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 2007

5.S - S = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 2007 - 5 - 5 ^ 2 - 5 ^ 3 - ... - 5 ^ 2006

     4.S = 5 ^ 2007 - 5

        S = \(\frac{5^{2007}-5}{4}\)