CHo tam giác ABC . Các tia phân giác của các góc B và C cắt nhau tại điểm I . Chứng minh AI là tia phân giác của góc A
6. Cho tam giác ABC vuông tại A, các đường phân giác của góc B và C cắt nhau ở điểm I.
a) Chứng minh: AI là tia phân giác góc BAC.
Xét tam giác ABC vuông tại A:
BI; IC là đường phân giác (gt).
BI cắt CI tại I (gt).
\(\Rightarrow\) AI là tia phân giác góc BAC.
Tam giác ABC có BI; CI là các đường phân giác giao nhau tại I
=> I là tâm đường tròn ngoại tiếp
=> AI là phân giác
Xét tam giác ABC vuông tại A:
BI; IC là đường phân giác (gt).
BI cắt CI tại I (gt).
⇒⇒ AI là tia phân giác góc BAC.
Cho tam giác ABC. Các đường phân giác của các góc ngoài tại B và C cắt nhau tại I. Chứng minh rằng AI là tia phân giác của góc A.
Cho tam giác ABC các đường phân giác của các góc ngoài tại B và C cắt nhau ở I Chứng minh: AI là tia phân giác của góc A
Kẻ IK,IH,IE lần lượt vuông góc BC,AB,AC
Xét ΔBHI vuông tại H và ΔBKI vuông tại K có
BI chung
góc HBI=góc KBI
=>ΔBHI=ΔBKI
=>IH=IK
Xét ΔCKI vuông tại K và ΔCEI vuông tại E có
CI chung
góc KCI=góc ECI
=>ΔCKI=ΔCEI
=>IK=IE
=>IH=IE
Xét ΔAHI vuông tại H và ΔAEI vuông tại E có
AI chung
IH=IE
=>ΔAHI=ΔAEI
=>góc HAI=góc EAI
=>AI là phân giác của góc BAC
Cho tam giác ABC. Các tia phân giác của góc B và C cắt nhau tại I. Chứng minh rằng AI là tia phân giác của góc A.
Hướng dẫn: Từ I kẻ các đường vuông góc với cạnh của tam giác ABC.
cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Chứng minh rằng AI là tia phân giác của góc A.
help me
XétΔABC có
BI,CI là các tia phân giác
BI cắt CI tại I
Do đó: I là tâm đường tròn nội tiếp
hay AI là tia phân giác của góc BAC
Cho tam giác ABC. Các tia phân giác góc b và phân giác góc C cắt nhau tại I. Chứng minh AI là tia phân giác góc A.
cho tam giác ABC. các tia phân giác của góc A,B cắt nhau tại I. Chứng minh AI là tia phân giác của góc A
Sửa đề: Phân giác góc B,C cắt nhau tại I
Kẻ ID⊥AB tại D, IF⊥AC tại F, IE⊥BC tại E
Xét ΔIDB vuông tại D và ΔIEB vuông tại E có
IB chung
\(\widehat{DBI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{DBE}\))
Do đó: ΔIDB=ΔIEB(cạnh huyền-góc nhọn)
⇔ID=IE(hai cạnh tương ứng)(1)
Xét ΔIEC vuông tại E và ΔIFC vuông tại F có
IC chung
\(\widehat{ECI}=\widehat{FCI}\)(CI là tia phân giác của \(\widehat{ECF}\))
Do đó: ΔIEC=ΔIFC(cạnh huyền-góc nhọn)
⇒IE=IF(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra ID=IF(=IE)
Xét ΔADI vuông tại D và ΔAFI vuông tại F có
AI chung
ID=IF(cmt)
Do đó: ΔADI=ΔAFI(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{DAI}=\widehat{FAI}\)(hai góc tương ứng)
⇒\(\widehat{BAI}=\widehat{CAI}\)
mà tia AI nằm giữa hai tia AB,AC
nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)
cho tam giác ABC. Các tia phân giác của góc B và C cắt nhau tại I. Chứng ming rằng AI là tia phân giác của góc A
Xét ΔABC có
BI là phân giác
CI là phân giác
BI cắt CI tại I
Do đó: I là tâm đường tròn nội tiếp ΔABC
=>AI là tia phân giác của góc BAC
1.Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Chứng minh rằng AI là tia phân giác của góc A.
Hướng dẫn: Từ I kẻ các đường thẳng vuông góc với các cạnh của tam giác ABC
2.Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK.
1.Vì các tia phân giác của các góc B và C cắt nhau tại I
\(\Rightarrow\)I là giao của các đường phân giác trong tam giác
\(\Rightarrow\)AI là tia phân giác của góc A
1.
Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)
\(\widehat{IDB}=\widehat{IEB}=90^0\)
\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)
BI cạnh huyền chung
⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có ;
\(\widehat{IEC}=\widehat{IFC}=90^0\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI canh huyền chung
Suy ra: ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^0\)
ID = IF (chứng minh trên)
AI cạnh huyền chung
Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)
Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
2. Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK.
Xét ∆BMI và ∆CMI, ta có:
+) BM = CM (vì IM là đường trung trực của BC)
+)\(\widehat{BMI}=\widehat{CMI}=90^0\)
+) MI cạnh chung
Suy ra: ∆BMI = ∆CMI (c.g.c)
⇒ IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông IHA và IKA, có:
+) \(\widehat{HAI}=\widehat{KAI}\) (AI là phân giác góc A)
+) AI cạnh huyền chung
Suy ra: ∆IHA = ∆IKA (cạnh huyền - góc nhọn)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông IHB và IKC, có:
+) IB = IC (chứng minh trên)
+) IH = IK (chứng minh trên)
Suy ra: ∆IHB = ∆IKC (cạnh huyền - cạnh góc vuông)
Suy ra: BH = CK (2 cạnh tương ứng)