CMR: n^3 -13n chia hết cho 6
CMR: n^3 - 13n chia hết cho 6 với mọi n thuộc N
Ta có :
\(n^3-13n=\left(n^3-n\right)-12n\)
\(=n\left(n^2-1\right)-6.\left(2n\right)\)
\(=n\left(n-1\right)\left(n+1\right)-6\left(2n\right)\)
\(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3; hay chia hết cho 6.
Mà \(6\left(2n\right)\) chia hết cho 6
\(\Rightarrow n\left(n-1\right)\left(n+1\right)-6\left(2n\right)\)chia hết cho 6
Do đó \(n^3-13n\)chia hết cho 6.
\(A=n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)
Ta có:
\(n\left(n-1\right)\left(n+1\right)\)chia hết cho 6.
\(12n\)chia hết cho 6.
\(\Rightarrow n\left(n-1\right)\left(n+1\right)-12n\)chia hết cho 6
Hay \(n^3-13n\)chia hết cho 6.
CMR: Với mọi số nguyên n ( n>1)
Thì n3 - 13n chia hết cho 6
Do n nguyên và n > 1 nên \(n\ge2\)
Với n = 2 \(n^3-13n=-18⋮6\)
Giả sử đúng với n = k (k>1) tức là \(k^3-13k⋮6\)
Ta chứng minh điều có đúng với n = k + 1
Thật vậy: \(\left(k+1\right)^3-13\left(k+1\right)=k^3+3k^2+3k+1-13k-13\)
\(=\left(k^3-13k\right)+\left(3k^2+3k-12\right)\)
Ta chỉ cần chứng minh: \(3k^2+3k-12⋮6\)
\(\Leftrightarrow3\left(k^2+k\right)⋮6\Leftrightarrow k^2+k⋮2\)
Tới đây xét tính chẵn lẻ nữa là xong=)
n3 -13n = n3 - n - 12n = n(n2-1) - 12n = (n-1)n(n+1) - 12n
Ta có: (n-1)n(n+1) là 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 => n3 -13n \(⋮\)6
WTF DŨNG YOU LITTLE PIECE OF SHIT WHAT WRONG WITH YOU
cmr: n3-13n chia hết cho 6 với mọi gia tri cua n \(\in\)Z
A = n3-n - 12n= n(n2-1)-12n=n(n-1)(n+1)-12n
ta có 12n chia hết 6
n(n-1)(n+1) là tích 3 số nguyên liên tiếp chia hết cho 6. Vậy a chia hết cho 6
nhớ k cho mik nhá
CMR
n mũ 3-13n chia hết cho 6
n mũ 3+3n mũ 2+2n chia hết cho 6
n mũ 5-n chia hết cho 5
n lớn hơn 3 lớn hơn n nguyên tố
CM [n mũ 2-1] chia hết cho 24
n*[n+2]*25n mũ 2 chia hết cho 24
\(n^3-13n=n\left(n^2-1\right)-12n.\)
\(=n\left(n-1\right)\left(n-2\right)-12n\)
Vậy chia hết cho 6 vì
n(n-1)(n-2) chia hết cho 2;3 => chia hết cho 6
12n chia hết cho 6
n^3-n chia hết cho 6
n^3-13n chia hết cho 6
2n^3+3n^2+n chia hết cho 6
n^3-n= n( n^2-1) = n(n+1)(n-1) chia hết cho 6
các câu khác tg tự
n3 - 13n = n(n2 - 13)
* chứng minh nó chia hết cho 2
Với n chẵn thì n chia hết cho 2 => n3 - 13n chia hết cho 2
Với n lẻ thì (n2 - 13) chia hết cho 2 => n3 - 13n chia hết cho 2
* chứng minh nó chia hết cho 3
Với n = 3k thì nó chia hết cho 3
Với n = 3k + 1 thì n2 - 13 = 9k2 + 6k - 12 chia hết cho 3 => nó chia hết cho 3
Với n = 3k + 2 thì n2 - 13 = 9k2 + 12k - 9 chia hết cho 3 => nó chia hết cho 3
Từ đây ta có n3 - 13n chia hết cho 6
chứng minh rằng:
\(n^3\)-13n chia hết cho 6
Cho n thuộc Z . Chứng minh rằng:
n^3 - 13n chia hết 6
n^3 - 13n = n^3 - n -12n= n(n^2-1) - 6.2n= n(n-1)(n+1) - 6.2n
Ta có n(n-1)(n=1) là tích 3 số nguyên nên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau. Vậy n(n-1)(n+1) chia hết cho 2x3=6; Do đó n^3-13n= n(n-1)(n=1) -6.2n chia hết cho 6
chứng mịh : n3 - 13n chia hết cho 6
Này nhè
Ta có n3 - 13n = n3 - n - 12n = n . ( n2 - 1 ) - 12n = n . (n - 1) (n+ 1) - 12n
Ta có cứ 3 số nguyên liên tiếp sẽ có 1 số chia hết cho 3 và 1 số chia hết cho 2 ==> U7CNN (2,3) = 6 ==> n3 - 13n chia hết cho 6
Chứng Minh rắng n3-13n chia hết cho 6 vơi mọi n thuộc Z
Đặt B = n3 - 13n = n3 - n -12n = n(n - 1)(n + 1) - 12n
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và
chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6
=> n3 - n chia hết cho 6