tìm các số nguyên tos p q r sao cho p^q+q^p là số chính phương
tìm 3 số nguyên tố p,q,r sao cho p^q+q^r là số chính phương biết q khác r
Tìm tất cả các số nguyên dương x sao cho trong 3 mệnh đề sau có duy nhất một mệnh đề sai : P={ x+45 là số chính phương }, Q={(x-7):10}, R={ x-44 là số chính phương }
Tìm các số nguyên tố p,q sao cho \(p^2+pq+q^2\)là số chính phương
Đặt \(p^2+pq+q^2=a^2\) \(\left(a\inℤ\right)\)
\(\Leftrightarrow\left(p+q\right)^2-pq=a^2\)
\(\Leftrightarrow\left(p+q\right)^2-a^2=pq\)
\(\Leftrightarrow\left(p+q-a\right)\left(p+q+a\right)=pq\)
Xong chắc xét các TH với p,q là số nguyên tố
Tìm số nguyên tố p,q sao cho \(p^2+3pq+q^2\) là số chính phương
\(p^2+3pq+q^2=m^2\left(m\in N^{\text{*}}\right)\)
\(\Leftrightarrow pq+\left(p+q\right)^2=m^2\)
\(\Leftrightarrow pq=\left(m-p-q\right)\left(m+p+q\right)\)
TH1: \(\left\{{}\begin{matrix}m+p+q=pq\\m-p-q=1\end{matrix}\right.\)
\(\Rightarrow2p+2q-pq+1=0\)
\(\Leftrightarrow\left(p-2\right)\left(q-2\right)=5=1.5\)
\(\Leftrightarrow\left(p;q\right)\in\left\{\left(3;7\right);\left(7;3\right)\right\}\)
Thử lại ta được \(\left(p;q\right)\in\left\{\left(3;7\right);\left(7;3\right)\right\}\)
TH2: \(\left\{{}\begin{matrix}m+p+q=p\\m-p-q=q\end{matrix}\right.\Leftrightarrow3q+p=0\)
\(\Rightarrow\) Không tồn tại p, q thỏa mãn
TH3: \(\left\{{}\begin{matrix}m+p+q=q\\m-p-q=p\end{matrix}\right.\Leftrightarrow3p+q=0\)
\(\Rightarrow\) Không tồn tại p, q thỏa mãn
Vậy \(\left(p;q\right)\in\left\{\left(3;7\right);\left(7;3\right)\right\}\)
Tìm số nguyên tố \(p\) sao cho tổng các ước của \(p^4\)là một số chính phương?
Gợi ý:
Tổng các ước dương của p4p4 là : p4+p3+p2+p+1p4+p3+p2+p+1
Theo đề ra thì: p4+p3+p2+p+1=n2(n∈Np4+p3+p2+p+1=n2(n∈N
Để ý rằng: (2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1(2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1
Đến đây đơn giản rồi nhé !
___
NLT
k nha
Tìm các số nguyên dương \(n\) sao cho \(n^3+2019n\) là số chính phương
How to solve in the set positive integer the equation n^3 + 2019 n = k^2?
bạn vào thống kê hỏi đáp mình xem link nhé
Bạn ghi ra đi chứ mình tìm nhức mắt lắm
Tìm các số nguyên n sao cho \(n^2-4n+9\)là số chính phương
Gải sử \(n^2-4n+9\)là số chính phương , khi đó
\(n^2-4n+9=k^2\)
\(=>n^2-4n+4+5=k^2=>\left(n-2\right)^2+5=k^2\)
=>\(\left(n-2\right)^2-k^2=-5\)
-=>\(\left(n-2-k\right)\left(n-2+k\right)=-5\)
sai sai chỗ nào nhỉ
dạ cái kia là -9 mik viết sai ạ
Em đặt : \(n^2-4n+9=t^2\)( t nguyên )
<=> \(\left(n^2-4n+4\right)+5=t^2\)
<=> \(t^2-\left(n-2\right)^2=5\)
<=> \(\left(t-n+2\right)\left(t+n-2\right)=5\)
vì n ; t nguyên => t - n + 2 và t + n - 2 nguyên
E chia trường hợp ra rồi làm hak
cho các số nguyên tố p, q lớn hơn 3 sao p^2+q là số chính phương. CMR p^2+q chia hết cho 12
1: Tìm tất cả các nghiệm nguyên của phương trình: \(x^3-3xy=6y-1\)
2: Tìm các số nguyên tố x, y sao cho \(x^2+3xy+y^2\)là số chính phương