Cho tứ giác lồi ABCD. Điểm P nằm trong tứ giác ABCD sao cho \(\widehat{PAD}:\widehat{PBA}:\widehat{DPA}=1:2:3=\widehat{CBP}:\widehat{BAP}:\widehat{BPC}\). Chứng minh các phân giác trong của các góc ADP và PCB và đường trung trực của đoạn AB đồng quy tại một điểm.