Tính nhanh:1×2+2×3+3×4+.......+1999×2000
tính nhanh 1*2+2*3+3*4+.....+1999*2000
áp dụng kết quả phần a tính nhanh 1*1+2*2+3*3+...+1999*1999
=2666666000
Có công thức như sau
1x2+2x3+3x4+...+nx(n+1)=nx(n+1)x(n+2):3
Tính nhanh : 1 + 2 + 3 + 4 + 5 + ... +1999 + 2000
Số các số hạng là: (2000 - 1 ) + 1 = 2000 (số)
1+2+3+......+2000 = (2000+1) x 2000 : 2 = 2001000
1+ 2+ 3+4+5+.....+1999+2000
SSH : (2000 - 1)x1+1=2000
Tong day so tren la:
(1+2000)x2000:2=2001x2000:2
=4002000:2=2001000
Số số hạng của dãy là :
( 2000 - 1 ) : 1 + 1 = 2000 ( số )
Tổng của dãy là :
( 1 + 2000 ) x ( 2000 : 2 ) = 2 001 000
ĐS : ............
Tính nhanh:
1*2+2*3+3*4+...+1999*2000
giup minh!
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
Tính nhanh 1×2+2×3×3×4+...+1999×2000
Giải giúp mik với cảm ơn mọi người!
\(\text{Đặt S= biểu thức cần tính}\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+1999.2000.3\)
\(\Rightarrow3S=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+........+1999.2000\left(2001-1998\right)\)
\(\Rightarrow3S=1.2.3-1.2.3+2.3.4-2.3.4+......+1999.2000.2001\)
\(\Rightarrow3S=1999.2000.2001\Rightarrow S=\frac{1999.2000.2001}{3}=2666666000\)
tính nhanh : 1-2-3+4+5-6-7+...+1997-1998-1999+2000+2001
Ta có: 1-2-3+4+5-6-7+...+1997-1998-1999+2000+2001
=(1-2-3)+[4+(5-6-7)]+[8+(9-10-11)]+...+[1996+(1997-1998-1999)]+(2000+2001)
Từ 4 đến 1999 có số số hạng là: (1999-4):1+1=1996(số hạng)
= -4 + [4+(-8)] + [8+(-12)] + [12+(-16)] + ... + [1996+(-2000] + 4001
= -4 + (-4) + (-4) + (-4) + ... + (-4) + 4001
= -4 + (-4).(1996:4) + 4001
= -4 + (-4).499 + 4001
= -4.500 + 4001
= -2000 + 4001
= 2001
Nhớ k
Tính nhanh
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
`S = 1+2-3-5+5+6-7-8+9+10-...+1998-1999-2000+2001+2002`
có :
`(2002 - 1) :1 +1 = 2002` ( số hạng)
`2002 : 4 = 500 (dư 2)`
`=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002`
`=(-4)+(-4)+...+(-4) +2001 +2002` có `500` só `-4`
`=500 .(-4) + 2001+ 2002`
`= (-2000)+2001+2002`
`=1+2002`
`=2003`
tính nhanh (2004^2 + 2002^2 + 2000^2 +...+ 4^2 + 2^2) - (2003^2 + 2001^2 + 1999^2 +...+ 5^2 + 3^2 + 1)
=2004^2-2003^2+2002^2-2001^2+....+1
=(2004+2003)(2004-2003)+(2002+2001)(2002-2001)+.....+1
=2004+2003+...+1
=2009010
Tính
A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+......+\frac{1}{1999}}\)
Ai nhanh và đúng mình tick cho
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)
\(=\frac{1}{2000}\)
Tính nhanh:
`1-2-3+4+5+7+8+...+1997-1998-1999+2000+2001`
Sửa đề chút : Tính nhanh 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 1997 - 1998 - 1999 + 2000 + 2001
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 1997 - 1998 - 1999 + 2000 + 2001
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 1997 - 1998 - 1999 + 2000 ) + 2001
= 0 + 0 + ... + 0 + 2001
= 2001