Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Gia Hân
Xem chi tiết
võ duy phan
14 tháng 7 2018 lúc 10:28

7)a) abcabc : abc = 1001 
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên  abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
 

Trần Tiến Pro ✓
5 tháng 11 2018 lúc 20:28

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

Đỗ Thị Yến
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
4 tháng 3 2021 lúc 15:43

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

Nguyễn Ngọc An
Xem chi tiết
#❤️_Tiểu-La_❤️#
3 tháng 4 2017 lúc 18:09

Ta có : abcabc=1000xabc+abc=(1000+1)xabc=1001xabc

Vì 1001 chia hết cho 11 và 13

=> 1001xabc chia hết cho 11 và 13

=> abcabc chia hết cho 11 và 13

Vậy bài toán được chứng minh

Có gì thì tk và kết pn vs mik nha !!!

tạ hữu nguyên
3 tháng 4 2017 lúc 18:02

 k mk đi, làm ơnnnnn

Bùi Thái Ly
Xem chi tiết
Pé Ngô Lỗi
18 tháng 10 2015 lúc 21:13

a)

abcabc=abc.1001

Mà 1001 chia hết cho cả 7 ;11và 13

=>abc.1001 chia hết cho 7;11;13

Hay abcabc chia hết cho 7;11;13

Vậy............................

b)

abcdeg=abc.1000+deg                                                                                     (1)

Thay abc=2.deg vào (1) ta có  :

deg.2.1000+deg

=deg.2001

Mà 2001 cùng chia hết ch0 23 và 29

=>deg.2001 chia hết cho cả 23 và 29

Hay abcdeg chia hết cho 23 và 29

Vậy ......................................

ngu như bò
Xem chi tiết
tuonggiaminh
24 tháng 7 2015 lúc 17:56

bai nay hinh nhu la o sach ly tu trong

 giai

abcabc=a.100000+b.10000+c.1000+a.100+b.10+c.1

= 100100.a+10010.b+1001.c

 

100100.a chia het cho 11 va 13

b.10010 chia het cho 11 va 13

c.1001 chia het cho 11 va 13

=> abcabc chia het 11 va 13

 

congchuaori
25 tháng 7 2015 lúc 15:37

Ta có :

abcabc=abcx1000+abcx1

           =abcx[1000+1]

           =abcx1001

           =abcx7x11x13

Vì 11 chia hết cho 11 ; 13 chia hết cho 13 nên suy ra [abcx7x11x13 ] chia hết cho 11 , chia hết cho 13

Hay abcabc chia hết cho 11 , chia hết cho 13

Vậy abcabc chia hết cho 11 , chia hết  cho 13

Trần Tiến Pro ✓
5 tháng 11 2018 lúc 20:27

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

Cure Miracle
Xem chi tiết
Cure Miracle
20 tháng 8 2017 lúc 9:54

giải ra giùm mình nhé 

ai trả lời được mình k cho

Mygame43
2 tháng 11 2023 lúc 18:56

Ai cho điểm là hs giỏi

 

Lê Thị Hoài Thương
Xem chi tiết
Xyz OLM
2 tháng 7 2019 lúc 20:37

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

Nguyễn Văn Tuấn Anh
2 tháng 7 2019 lúc 20:45

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt

Tsunami
Xem chi tiết
Nguyễn Tuấn Minh
22 tháng 10 2016 lúc 12:57

abcabc=abc.1000+abc=abc.(1000+1)=abc.1001=abc.11.13.7

Vậy abcabc chia hết cho 7;11;13

Trần Tiến Pro ✓
5 tháng 11 2018 lúc 20:27

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

Kurosaki Ichigo
Xem chi tiết
Kurosaki Ichigo
12 tháng 4 2016 lúc 17:49

Giải:

Ta có: abcabc = abc000  + abc 

                      = abc x 1000 + abc 

                      = abc . (1000 + 1)

                      = abc . 1001

                      = abc . 7 . 11 . 13

Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13

huyen
Xem chi tiết
Nguyễn Anh Thư
18 tháng 10 2017 lúc 20:07

a) Theo bài ra ta có:
abcabc = 1000abc + abc
             = ( 1000 +1)abc
             =1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
       1001 chia hết cho 7 => abcabc chia hết cho 7.
       1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3

Trần Tiến Pro ✓
5 tháng 11 2018 lúc 20:30

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13