giai cho vui thoi nhe mn.
A= 21! - 21
1!x1+2!x2+3!x3+4!x4+.....+19!x19
4!=1x2x3x4=24
giai cho vui thoi nhe mn.
A= 21! - 21
1!x1+2!x2+3!x3+4!x4+.....+19!x19
hello ajinomoto!!
ai thich thi giai nha,ko thich thi thoi, dang len cho vui ma
1) (21!-21) :(1!x1 + 2!x2 + 3!x3 +....+ 19!x19)
*4! = 1 x 2 x 3 x 4 = 24
bằng 54, vote mk đi, đúng rồi
sai r ban oi
( 1!x1 + 2!x2 + .... +19! x 19)= (2-1) x 1! + (3 - 1) x 2! + ...+ (20-1) x 19!
= 2! - 1! + 3! - 2! + ... + 20!- 19!
=-1! + 20!
21!-21= 20! x 21 - 21
=(20! - 1 )x 21
=> (20!-1) x21
20! - 1
=21
1 : tinh nhanh
a: (-2003)+(-21+75+2003)
b: 1152-(374+1152)+(-65+374)
2: cho X1 + X2 + X3 + ... + X51 = 0 va X1 + X2 + X3 + X4 = X50 + X51 = 1 . tinh X50
bài2 :
Ta có x1 + x2 + x3 + x4 +....+x49 + x50 + x51 = 0
=> (x1 + x2) + (x3 + x4)+....+(x49+ x50) + x51 = 0
=> [1 + 1 + 1+.....+ 1] +x51 = 0
Ta có từ x1 ---> x50 có 50 số => trong [..] có 25 số 1
=> 25 + x51 =0 => x51 = -25
Có x50+ x51 = 1 => x50= 1- x51 = 26
bài 1:
a)=(-2003)+(-21)+75+2003
=[(-2003)+2003]+(-21)+75
=0+(-21)+75
=(75-21)
=54
b)=1152-374-1152+(-65)+374
=[(1152-1152)]+[(-374)+374]+(-65)
=0+0+(-65)
=-65
bài 2 tự làm nhé mình đi ăn cơm đã
a)(-2003)+(-21)+75+2003
=[(-2003)+2003]+(-21)+75
=0+54
=54
cho phương trình (x+1)(x+2)(x+3)(x+4)=m
biết rằng phương trình đã cho có 4 nghiệm phân biệt x1,x2,x3,x4x1,x2,x3,x4
chứng minh x1.x2.x3.x4=24−m
Cho (x2)^2=x1.x3;(x3)^2=x2.x4.Chứng minh rằng: (x1+x2+x3)^2/(x2+x3+x4)^2=x1^2+x2^2+x3^3/x2^2+x3^3+x4^4
Mong các bạn giúp mình bài toán này
Tìm x1,x2,x3,x4,x5 biết:
x1-1/5=x2-2/4=x3-3/3=x4-4/2=x5-5/1 và x1+x2+x3+x4+x5=30
Tìm X1 ,x2 ,x3,x4,x5
\(\frac{x1-1}{5}=\frac{x2-2}{4}=\frac{x3-3}{3}=\frac{x4-4}{2}=\frac{x5-5}{1}\)\(v\text{à}\)X1 +x2+x3+x4+x5 =30
Đặt \(\frac{x_1-1}{5}=\frac{x_2-2}{4}=\frac{x_3-3}{3}=\frac{x_4-4}{2}=\frac{x_5-5}{1}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\frac{x_1+x_2+x_3+x_4+x_5-15}{15}=\frac{30-15}{15}=1\)
\(\frac{x_1-1}{5}=1\Rightarrow x_1=6;\frac{x_2-2}{4}=1\Rightarrow x_2=6;\frac{x_3-3}{3}=1\Rightarrow x_3=6;\frac{x_4-4}{2}=1\Rightarrow x_4=6;\frac{x^5-5}{2}=1\Rightarrow x_5=6\)
Vậy \(x_1=x_2=x_3=x_4=x_5=6\)
Cau 1:
Tim x, biet: 1-4+7-10+.............-x=-75
Cau 2:
Cho x1, x2, x3, x4, x5 thuộc Z
Biết x1+ x2 + x3 + x4 + x5=0
và x1 + x2=x3+ x4= x4 + x5 =2
Tinh x3, x4 , x5
Cau 3: Tim x biet
(x+7+1) chia het cho (x+7)
Tìm các số x1, x2, x3, x4, x5 biết \(\dfrac{x1-1}{5}=\dfrac{x2-2}{4}=\dfrac{x3-3}{3}=\dfrac{x4-4}{2}=\dfrac{x5-5}{1}vàx1+x2+x3+x4+x5=30\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x_1-1}{5}=\dfrac{x_2-2}{4}=\dfrac{x_3-3}{3}=\dfrac{x_4-4}{2}=\dfrac{x_5-5}{1}\)
\(=\dfrac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\dfrac{\left(x_1+x_2+x_3+x_4+x_5\right)-\left(1+2+3+4+5\right)}{15}\)
\(=\dfrac{30-15}{15}=1\)
\(\Rightarrow x_1=x_2=x_3=x_4=x_5=6\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x1-1}{5}\)=\(\dfrac{x2-2}{4}\)\(\dfrac{x3-3}{3}\)=\(\dfrac{x4-4}{2}\)=\(\dfrac{x5-5}{1}\)=\(\dfrac{x1-1+x2-2+x3-3+x4-4+x5-5}{5+4+3+2+1}\)=\(\dfrac{x1+x2+x3+x4+x5-\left(1+2+3+4+5\right)}{15}\)=\(\dfrac{30-15}{15}\)=\(\dfrac{15}{15}\)=1
\(\dfrac{x1-1}{5}\)=1 => x1-1=5 => x1 =6
\(\dfrac{x2-2}{4}\)=1 => x2-2=4 => x2 =6
\(\dfrac{x3-3}{3}\)=1 => x3-3=3 => x3 =6
\(\dfrac{x4-4}{2}\)=1 => x4-4=2 => x4 =6
\(\dfrac{x5-5}{1}\)=1 => x5-5=1 => x5 = 6
Vậy x1=x2=x3=x4=x5 =6