tìm x, y,z ,x biết
x2+5y2-4xy-22y+10x+|x+y+z|+26=0
Tìm x và y, z, biết
X^2+5y^2-4xy+10x-22y+|x+y+z|+26=0
Em cảm ơn ạ
\(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
\(\Leftrightarrow\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\\x+y+z=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\\z=2\end{matrix}\right.\)
tìm x,y biết x2 + 5y2 - 4xy +10x -22y + | x+y +z | +26 =0
tìm x,y mà lại lòi đâu ra z vậy??? bạn coi lại đề đi nào
x^2+5y^2-4xy+10x-22y+/x+y+z/+26=0
tìm 3 số x,y,z sao cho
x2 + 5y2 - 4xy + 10x - 22y + |x + y + z|+ 26 = 0
bạn làm được chưa vậy nếu làm được thì cho mình xin cách giải với!!!!
Tìm số nguyên dương x,y biết:
a) \(x^2+5y^2+2x-4xy-10y-9=0\)
b) \(5x^2+5y^2+8xy+2+2y-2x=0\)
c) \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
d) \(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm
Tìm x, y, z nguyên thỏa mãn:
a) 9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
b) x2 + 5y2 - 4xy + 10x - 22y + |x + y + z|+ 26 = 0
c) x2 + y2 + x - xy + \(\frac{1}{2}\) = 0
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2(z+1)2=0
=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Suy ra hoặc \(3x-3=0\Leftrightarrow x=1\)
hoặc \(y-3=0\Leftrightarrow y=3\)
hoặc \(z+1=0\Leftrightarrow z=-1\)
Tìm x,y,z nguyên biết x²-4xy+5y²+20x-22y+12=0
Tìm GTNN:
1. G=2x2+9y2-6xy-6x-12y+2021
2. H=2x2+4y2+4xy+4y+9
3. I= x2-4xy+5y2+10x-22y+28
4. K=x2+5y2-4xy+6x-14y+15
Tìm giá trị nhỏ nhất của biểu thức:
C = x2 - 4xy + 5y2 +10x - 22y +28
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)