cho tam giác ABC nhọn.Kẻ đường cao AH, vẽ đường tròn tâm(o) đường kính AH cắt AB,AC tại D và E.Đường thẳng DE cắt BC tại F
a, Chứng Minh BDEC nội tiếp
b, Chứng Minh FB.FC=FH bình
cho tam giác ABC nhọn . vẽ đường tròn đường kính BC , đường tròn này cắt AB,AC tại E và K . BK cắt CE tại H và AH cắt BC tại F
a) chứng minh AF vg với BC tại F và tứ giác AEFC nội tiếp
b) chứng minh FA là phân giác EFK
C)chứng minh tứ giác KEFO nội tiếp
d)KE cắt BC tại S . chứng minh SN vg với ON
a: góc BEC=1/2*sđ cug CB=90 độ
=>CE vuông góc AB
góc BKC=1/2*sđ cung BC=90 độ
=>BK vuông góc AC
Xet ΔABC co
BK,CE là đường cao
BK cắt CE tại H
=>H là trực tâm
=>AF vuông góc BC tại F
góc AEC=góc AFC=90 độ
=>AEFC nội tiếp
b: góc EFA=góc ABK
góc KFA=góc ACE
mà góc ABK=góc ACE
nên góc EFA=góc KFA
=>FA là phân giác của góc EFK
c: góc BEF=góc BCA
góc AEK=góc ACB
=>góc FEK=180 độ-2*góc BCA
=góc KOC
=>góc FEK+góc KOF=180 độ
=>EKOF nội tiếp
Cho DABC vuông ở A, AB < AC. Vẽ đường cao AH, đường tròn (O) đường kính AH lần lượt cắt AB và AC tại D và E.
A) Chứng tỏ 3 điểm D, O, E thẳng hàng.
B) Chứng minh: tứ giác BDEC nội tiếp.
C) Gọi M là trung điểm của BC. Chứng minh AM ^ DE.
Cho tam giác ABC có ba góc nhọn ( AB bé hơn AC ) nội tiếp trong đường tròn tâm O. Hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) chứng minh các tứ giác AEHF, BFEC nội tiếp được đường tròn
b) tia AH cắt BC tại D, kẻ đường kính AK của đường tròn tâm O. Chứng ming AB.AC= AD.2R
c) đường thẳng EF cắt đường tròn tâm O tại hai điểm M và N ( M thuộc cung nhỏ AB ). Chứng minh AM = AN
d) vẽ đường tròn tâm i đường kính AH cắt đường tròn tâm O tại S ( S khác A ), đường thẳng SA và BC cắt nhau tại T. Chứng minh ba điểm T, M, N thẳng hàng
Giúp mình câu b,c,d nhanh nhé! Mai mình nộp. Cmon mấy bạn
câu này dễ bạn tự làm thư đi
cậu có fb ko thì ghim vào mk kb mk gửi lời giải cho đc ko
Cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC. Kẻ đuwofng cao AH của tam giác ABC. Đường tròn đường kính AH cắt đường tròn tâm O, AB, AC lần lượt tại M,D,E. Đường thẳng DE cắt BC tại K.
a)Chứng minh 3 điểm A,M,K thẳng hàng
b) Chứng minh 4 điểm B,D,E,C cùng nằm trên một đường tròn
Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC. Kẻ đường cao AH của tam giác ABC. Biết BC=20cm, AH/AC= 3/4
1. Tính AB và AC
2. Đường tròn đường kính AH cắt (O), AB, AC lần lượt tại M,D,E. DE cắt BC tại K. Chứng minh: A,M,K thẳng hàng
3. Chứng minh: B, D, E, C cùng thuộc một đường tròn
Cho tam giác ABC nội tiếp đường tròn tâm O,đường kính BC , đường cao AH
1> Cho BH = 9,HC=16.Tính AH,AB,AC và bán kính đường tròn nội tiếp tam giác ABC
2>Vẽ đường tròn tâm I,đường kính AH. Đường tròn tâm I cắt AB ở D,cắt AC ở E và cắt đường tròn tâm O ở K ,K khác A.
Chứng minh AEHD là Hình Chữ Nhật và D,I,E thẳng hàng
3> Chứng minh 0A vuông góc với DE
4>AK cắt BC ở F.Chứng minh F,D,E thẳng hàng
Cho tam giác ABC vuông tại A có đường cao AH. Gọi K là trung điểm AH. Từ H, hạ đường thẳng vuông góc với AB và AC tại D và E.Đường tròn tâm K bán kính AK cắt đường tròn tâm O đường kính BC tại I, AI cắt BC tại M
a) Chứng minh A, I, D, H, E thuộc một đường tròn
b) MK vuông góc với AO
c) M, D, K, E thẳng hàng
d) chứng minh MD.ME= \(MH^2\)
Cho tam giác ABC có 3 góc nhọn (AB<AC). Đường tròn tâm O đường kính BC cắt AB và AC lần lượt tại D và E. Đường thẳng BE cắt CD tại H. Tia AH cắt BC tại F
a) Chứng minh: AF vuông góc BC và góc HEF = góc HCF
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)
nên HECF là tứ giác nội tiếp
=>\(\widehat{HEF}=\widehat{HCF}\)
Cho tam giác ABC nội tiếp đường tròn tâm O và AB<AC . Vẽ AH vuông góc với BC tại H . đường tròn đường kính AH lần lượt cắt AB ,AC tại I và K . Chứng minh ba đường thẳng AD , IK và BC đông qui
giúp em vs