Tính tổng: 1 + 1/2 + 1/3 + 1/4 +...+ 1/63.
B1:Tính tổng S=1+2+2^2+2^3+....+2^2008/1-2^2009
B2:Chứng minh rằng:
a,A=1+1/2^2+1/3^2+1/4^2+...+1/100^2 <2
b,B=1+1/2+1/3+1/4+...+1/63<6
c,C=1/2*3/4*5/6*...*9999/10000 ,1/100
Tính tổng sau: a) 1/2+1/6+1/12+1/20+1/30 b) 1/15+1/35+1/63+1/99+1/143 c) 1/6+1/12+1/20+1/30+1/42+1/56 d) 1/2+1/2^2+1/2^3+1/2^4+1/2^5 e) 1/7+1/7^2+1/7^3+...+1/7^100 f) 1+1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+...+1/200*(1+2+3+..+200) g) (1/2+1)*(1/3+1)*(1/4+1)*..*(1/100+1) h) (1-1/2)*(1-1/3)*(1-1/4)*...*(1-1/2022) Giúp mk vs ạkkk
a) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
=\(1-\dfrac{1}{6}\)=\(\dfrac{5}{6}\)
b) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
=\(\dfrac{1.2}{3.5.2}+\dfrac{1.2}{5.7.2}+\dfrac{1.2}{7.9.2}+\dfrac{1.2}{9.11.2}+\dfrac{1.2}{11.13.2}\)
=\(\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\).
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)=\(\dfrac{1}{2}.\dfrac{10}{39}\)=\(\dfrac{5}{39}\).
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
=\(1-\dfrac{1}{8}=\dfrac{7}{8}\).
d) \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4}{2^5}+\dfrac{2^3}{2^5}+\dfrac{2^2}{2^5}+\dfrac{2}{2^5}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4+2^3+2^2+2+1}{2^5}\)=\(\dfrac{2^5-1}{2^5}=\dfrac{31}{32}\).
e) \(\dfrac{1}{7}+\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}=\dfrac{7^{99}+7^{98}+7^{97}+...+7+1}{7^{100}}=\dfrac{\dfrac{7^{100}-1}{6}}{7^{100}}=\dfrac{7^{100}-1}{6.7^{100}}\)
tính tổng
S=1+2+2^2+2^3+2^4+2^5+...+2^63
Giải
S = 1+2+2^2+2^3+...+2^62+2^63 (1)
Nhân hai vế với 2 ta có :
2S = 2+2^2+^3+...+2^63+2^64 (2)
Trừ từng vế đắng thức (2) cho đẳng thức (1), ta có : S = 2^64-1
jup mik nha
Tính tổng:
1/15+1/35+1/63+1/99+1/143
1/5*9+1/9.13+1/13*17+...+1/25*29
2/15+3/15+2/63+...+2/9603
mơn mọi người
Đặt \(A=\)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{143}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{11.13}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(2A=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
\(A=\frac{5}{39}\)
Câu còn lại cx dựa như vậy nhé bn !
Chúc bn hc tốt <3
Tính tổng biểu thức sau\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{63}\)
ghi rõ cách làm nha
thanks
B1:Tính tổng S=1+2+2^2+2^3+....+2^2008/1-2^2009
B2:Chứng minh rằng:
a,A=1+1/2^2+1/3^2+1/4^2+...+1/100^2 <2
b,B=1+1/2+1/3+1/4+...+1/63<6
c,C=1/2*3/4*5/6*...*9999/10000 ,1/100
B1 : S = 1 + 2 + 2^2 + 2^3 + ... + 2^2008 / 1 - 2^2009
Đặt A = 1 + 2 + 2^2 + 2^3 + ... + 2^2008
2A = 2 + 2^2 + 2^3 + 2^3 + 2^4 + ... + 2^2009
2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2009 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2008 )
A = 2^2009 - 1
S = 2^2009 - 1 / 1 - 2^2009
S = -1
Tính tổng sau
a) Cho \(H=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)
Hãy chứng tỏ H>2
tính 1\2+1\3+1\4+....+1\63
Tính tổng sau 1/1+1/2+2/2+1/3+2/3+3/3+.... đến phân số thứ 2019
Nêu cách lm ra nhế (Đáp số là 63 nha )