a)So sánh hai số: 3^4022 và 2^6033
b)Cho S=1.2+3.4+.....+2010.2011.Chứng minh S chia hết cho 2011
a,so sánh hai số 3^4002 và 2^6033
b, Cho S= 1.2+2.3+3.4+....+2010.2011. Chứng minh S chia hết cho 2011
a)so sánh 3^4032 và 2^6048
b)cho s = 1.2+2.3+3.4+...+2015.2016 . chứng minh s chia hết cho 2016
c)tìm a,b,c thuoc N . biết 3a+4b+5c chia hết cho 11 va 9a +4c +b chia hết cho 11
cần gấp trước 8:00
giải nhanh mình link cho
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
Cho tổng S = 3 + 3^2 + 3^3 +...+ 3^2007
a) Chứng minh S chia hết cho 13
b) Tìm số dư khi chia S cho 40
c) So sánh 2S + 3 với 82^502
Ta có:
\(S=3+3^2+3^3+...+3^{2007}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{2005}+3^{2006}+3^{2007}\right)\)
\(=1.\left(3+3^2+3^3\right)+...+3^{2004}.\left(3+3^2+3^3\right)\)
\(=\left(1+...+3^{2004}\right).\left(3+3^2+3^3\right)\)
\(=\left(1+...+3^{2004}\right).39=\left(1+...+3^{2004}\right).3.13\) chia hết chp 13
a) S= 3+3^2+....+3^2007
= ( 3 + 3^2 +3^3)+....+(3^2005+3^2006+2^2007)
= 3(1+3+9)+......+3^2005(1+3+9)
= 3. 13 +......+2^2005.13
=13(3+...+2^2005) chia hết cho 13
=> ĐPCM
b) S= 3+3^2+....+3^2007
= 3 + (3^2+3^3+3^4+3^5)+.....+(3^2004+3^2005+3^2006+3^2007)
= 3 + 3^2( 1+3+9+27)+.....+3^2004(1+3+9+27)
= 3+ 3^2.40 +....+3^2004.40
= 3+ 40(3^2+...+3^2004) chia cho 40 dư 3
MÌnh nghĩ câu c, k đến nỗi nào , cô lên , 2S + 3 thì cứ làm theo vd sau
A= 2+2^2+...+2^11
2A = 2^2+...+2^12
rồi làm hơ ,
A=1.2+2.3+3.4+......+2010.2011
P/S dấu chấm . là dấu nhân
3A= 1.2.3+2.3.3+3.4.3+...........+2010.2011.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.........+2010.2011.(2012-2009)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+2010.2011.2012-2009.2010.2011
=>3A=2010.2011.2012
=>3A=3.670.2011.2012
=>A=670.2011.2012
=>A= .......lấy máy tính mà tính
Chứng minh A=2^1+2^2+2^3+2^4+.....+2^2011 chia hết cho 3 và 7
So sánh A=2^0+2^2+2^3+2^4+....+2^2010 và B=2^2011-1
Bài 1: (Em à bài này phải là
A=20+21+22+23+24+.....+22011 mới đúng )
Nếu thế ta giải như sau:
- Có A=20+21+22+23+24+.....+22011
Nên 2A = 2 (20+21+22+23+24+.....+22011 )
= 21+22+23+24+.....+22011 + 22012
=>A = 2A - A = 22012 - 20
= 22012 - 1
Vì 22012 = 22.1006 =(22)1006 chia 3 dư 1 (vì 22 chia 3 dư 1)
Nên A = 22012 - 1 chia hết cho 3
- Lại có A=20+21+22+23+24+.....+22011
=(20+21+22)+(23+24+ 25) + ( 26 +....+22008) + (22009 + 22010 +22011 )
= (20+21+22)+23.(20+21+22) + ....+ 22009.(20+21+22)
=7+23 . 7 + ....+ 22009. 7
=7. (1+23+ +26 +29 + ....+ 22009) chia hết cho 7
Vậy A chia hết cho cả 3 và 7
Bài 2:
Có A=20+21+22+23+24+.....+22010
Nên 2A = 2 (20+21+22+23+24+.....+22010 )
= 21+22+23+24+.....+22011 + 22011
=>A = 2A - A = 22011 - 20
= 22011 - 1
= B
Vậy A = B
1.so sánh
a)222333 và 333222
b)tìm các chữ số x,y để số 1x8y2 chia hết cho36
2.cho S=30+32+34+ ... +32002
a) tính S
b)chứng minh S chia hết cho 7
1.a) 222333 và 333222
=> (111.2)333 và (111.3)222
=> [(111.2)3]111 và [(111.3)2]111
=> 1113.8 và 1112.9
=> 888.1112 và 1112.9
Vì 888 > 9 => 222333 > 333222
b) 1x8y2 chia hết cho 36
=> 1x8y2 chia hết cho 4 và 9 (vì 36 = 4.9)
1x8y2 chia hết cho 4 => y2 chia hết cho 4 => y = {1;3;5;7;9}
Nếu y = 1 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 1 + 2 chia hết cho 9 => 12 + x chia hết cho 9 => x = 6
Nếu y = 3 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 3 + 2 chia hết cho 9 => 14 + x chia hết cho 9 => x = 4
Nếu y = 5 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 5 + 2 chia hết cho 9 => 16 + x chia hết cho 9 => x = 2
Nếu y = 7 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 7 + 2 chia hết cho 9 => 18 + x chia hết cho 9 => x = {0;9}
Nếu y = 9 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 9 + 2 chia hết cho 9 => 20 + x chia hết cho 9 => x = 7
2.b)S = 30 + 32 + ... + 32002
=> S = (30 + 32 + 34) + ... + (31998 + 32000 + 32002)
=> S = (30 + 32 + 34) + ... + 31998.(30 + 32 + 34)
=> S = 91 + ... + 31998.91
=> S = 91.(1 + ... + 31998) chia hết cho 7
a) S = 30 + 32 + ... + 32002
=> 32S = 32 + 34 + ... + 32004
=> 32S - S = 32 + 34 + ... + 32004 - 30 - 32 - ... - 32002
=> 8S = 32004 - 1
=> S = 32004 - 1/8
1a, bài này t làm theo cách riêng
222333 và 333222
(111.2)333 = 111333. 2333
(111.3)222 = 111222 . 3222
so sánh 111333 > 111222 (1)
2333 = (23)111 = 8111
3222 = (32)111 = 9111
vì 9111 > 8111 nên 2333 < 3222 (2)
Từ (1) và (2) ta được
111333 . 2333 = 111222 . 3222
=> 222333 = 333222
(hơi dài dòng nhưng số nhỏ hơn cách đổi trực tiếp về cơ số hay lũy thừa = nhau thông thường) =)
1b, tự làm ik.... c~g đơn giản
2a, S = 3o + 32 +34 + .... + 32002
9.S = 32 + 34 + 36 + ... + 32004
=> 9.S - S = (32+34+36+...+32004) - 3o - 32 - 34 - ... - 32002
=> 8 . S = 32004 - 1
=> S = \(\frac{3^{2004}-1}{8}\)
2b, olm có mí câu
Bài 1 : Cho
S = ( 1.2.3.4....2017 )( 1+ 1/2 + 1/3 + ... + 1/2017 )
Chứng minh S chia hết cho 2018
Tổng quát bài toán ?
Bài 2 : Cho A = 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/2017.2018
B = 1/1010.2018 + 1/1011.2017 + 1/1012.2016 + ... + 1/2018.1010
Chứng minh A : B là số nguyên
Tổng quát bài toán??
P/S : Có lời giải nhé !!!
Tính tổng sau : \(S=\frac{2011}{1.2}+\frac{2011}{2.3}+...+\frac{2011}{2010.2011}\)