Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Nguyễn Diễm Quỳnh
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Trần Bảo Hân
Xem chi tiết

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

Nguyễn Đức Trí
1 tháng 8 2023 lúc 9:29

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

Đông joker
Xem chi tiết
Le Thi Khanh Huyen
22 tháng 10 2015 lúc 21:06

Ta có:

\(S=3+3^2+3^3+...+3^{2007}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{2005}+3^{2006}+3^{2007}\right)\)

\(=1.\left(3+3^2+3^3\right)+...+3^{2004}.\left(3+3^2+3^3\right)\)

\(=\left(1+...+3^{2004}\right).\left(3+3^2+3^3\right)\)

\(=\left(1+...+3^{2004}\right).39=\left(1+...+3^{2004}\right).3.13\) chia hết chp 13

Hằng Phạm
22 tháng 10 2015 lúc 21:11

a) S= 3+3^2+....+3^2007  
      = ( 3 + 3^2 +3^3)+....+(3^2005+3^2006+2^2007)
      = 3(1+3+9)+......+3^2005(1+3+9)
     = 3. 13 +......+2^2005.13
     =13(3+...+2^2005) chia hết cho 13 
=> ĐPCM
b) S= 3+3^2+....+3^2007
      = 3 + (3^2+3^3+3^4+3^5)+.....+(3^2004+3^2005+3^2006+3^2007)
      = 3 + 3^2( 1+3+9+27)+.....+3^2004(1+3+9+27)
      = 3+ 3^2.40 +....+3^2004.40 
     = 3+ 40(3^2+...+3^2004) chia cho 40 dư 3
MÌnh nghĩ câu c, k đến nỗi nào , cô lên , 2S + 3 thì cứ làm theo vd sau 
A= 2+2^2+...+2^11
2A = 2^2+...+2^12
rồi làm hơ ,

Nguyễn Vũ Quỳnh Thy
Xem chi tiết
Trịnh Xuân Diện
12 tháng 9 2015 lúc 13:16

3A= 1.2.3+2.3.3+3.4.3+...........+2010.2011.3

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.........+2010.2011.(2012-2009)

=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+2010.2011.2012-2009.2010.2011

=>3A=2010.2011.2012

=>3A=3.670.2011.2012

=>A=670.2011.2012

=>A= .......lấy máy tính mà tính

Phan Huy Minh
Xem chi tiết
đỗ huy bình
1 tháng 12 2014 lúc 17:35

Bài 1: (Em à bài này phải là 

A=20+21+22+23+24+.....+22011 mới đúng ) 

Nếu thế ta giải như sau:

- Có A=20+21+22+23+24+.....+22011

Nên 2A = 2 (20+21+22+23+24+.....+22011 )

             = 21+22+23+24+.....+22011 + 22012

=>A = 2A - A = 22012 - 20

                         = 22012 - 1

Vì 22012 = 22.1006 =(22)1006 chia 3 dư 1 (vì 2chia 3 dư 1)

Nên A = 22012 - 1 chia hết cho 3 

- Lại có A=20+21+22+23+24+.....+22011

              =(20+21+22)+(23+24+ 25)  +                      ( 26 +....+22008)  + (22009 + 22010  +22011 )

= (20+21+22)+23.(20+21+22) ....+ 22009.(20+21+22)

=7+27 ....+ 22009. 7

=7. (1+23+ +26 +29 + ....+ 22009) chia hết cho 7

Vậy A chia hết cho cả 3 và 7

Bài 2:

 

Có A=20+21+22+23+24+.....+22010

Nên 2A = 2 (20+21+22+23+24+.....+22010 )

             = 21+22+23+24+.....+22011 + 22011

=>A = 2A - A = 22011 - 20

                         = 22011 - 1 

                         = B

Vậy A = B

tan le duong
24 tháng 1 2017 lúc 13:55

tau la con cho bay biet ko

cute vô đối
7 tháng 2 2017 lúc 13:05

bài đấy dễ ợt

Lê Nguyễn Khánh Hưng
Xem chi tiết
Lê Quang Phúc
5 tháng 11 2017 lúc 19:04

1.a) 222333 và 333222

=> (111.2)333 và (111.3)222

=> [(111.2)3]111 và [(111.3)2]111

=> 1113.8 và 1112.9

=> 888.1112 và 1112.9

Vì 888 > 9 => 222333 > 333222

b) 1x8y2 chia hết cho 36

=> 1x8y2 chia hết cho 4 và 9 (vì 36 = 4.9)

1x8y2 chia hết cho 4 => y2 chia hết cho 4 => y = {1;3;5;7;9}

Nếu y = 1 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 1 + 2 chia hết cho 9 => 12 + x chia hết cho 9 => x = 6

Nếu y = 3 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 3 + 2 chia hết cho 9 => 14 + x chia hết cho 9 => x = 4

Nếu y = 5 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 5 + 2 chia hết cho 9 => 16 + x chia hết cho 9 => x = 2

Nếu y = 7 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 7 + 2 chia hết cho 9 => 18 + x chia hết cho 9 => x = {0;9}

Nếu y = 9 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 9 + 2 chia hết cho 9 => 20 + x chia hết cho 9 => x = 7

2.b)S = 30 + 32 + ... + 32002

=> S = (30 + 32 + 34) + ... + (31998 + 32000 + 32002)

=> S = (30 + 32 + 34) + ... + 31998.(30 + 32 + 34)

=> S = 91 + ... + 31998.91

=> S = 91.(1 + ... + 31998) chia hết cho 7

a) S = 30 + 32 + ... + 32002

=> 32S = 32 + 34 + ... + 32004

=> 32S - S = 32 + 3+ ... + 32004 - 30 - 32 - ... - 32002

=> 8S = 32004 - 1

=> S = 32004 - 1/8

Nguyen Quang Hung
5 tháng 11 2017 lúc 19:00

thằng ngu học

Mavis Fairy Tail
5 tháng 11 2017 lúc 19:50

1a, bài này t làm theo cách riêng

222333 và 333222

(111.2)333 = 111333. 2333

(111.3)222 = 111222 . 3222

so sánh 111333 > 111222 (1)

2333 = (23)111 = 8111

3222 = (32)111 = 9111

vì 9111 > 8111 nên 2333 < 3222 (2)

Từ (1) và (2) ta được

111333 . 2333 = 111222 . 3222

=> 222333 = 333222

(hơi dài dòng nhưng số nhỏ hơn cách đổi trực tiếp về cơ số hay lũy thừa = nhau thông thường) =)

1b, tự làm ik.... c~g đơn giản

2a, S = 3o + 32 +34 + .... + 32002

9.S = 32 + 34 + 36 + ... + 32004

=> 9.S - S = (32+34+36+...+32004) - 3o - 32 - 34 - ... - 32002

=> 8 . S = 32004 - 1

=> S = \(\frac{3^{2004}-1}{8}\)

2b, olm có mí câu

Lưu Như Ngọc
Xem chi tiết
Trương Nguyên Đại Thắng
Xem chi tiết
Ami Mizuno
2 tháng 8 2019 lúc 9:46
https://i.imgur.com/Qbb60IV.jpg