TÍNH TỔNG:1x2x3+2x3x4+3x4x5 + ...+ n.(n+1)(n+2)
TÍnh tổng sau
B=1x2x3+2x3x4+4x5x6+...+2016x2017x2018
Mong các bạn giải nhanh cho mình nha .. CẢm ơn các bạn
ta có : B = 1.2.3 + 2.3.4 + 3.4.5 + ...... + 2016.2017.2018
4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 2016.2017.2018.2019
4B = 2016.2017.2018.2019
vậy B = 2016.2017.2018.2019/4
Ta có : B = 1.2.3 + 2.3.4 + ...... + 2016.2017.2018
=> 4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 2016.2017.2018.2019
=> 4B = 2016.2017.2018.2019
=> B = 2016.2017.2018.2019/4
Tính nhanh:2/1x2x3+2/2x3x4+2/3x4x5+2/4x5x6+2/5x6x7+2/6x7x8
Giúp mình với!Thanks
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)
\(=\frac{1}{1.2}-\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{56}\)
\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)
Dấu . là nhân nha
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)
.......................................
\(\frac{2}{6.7.8}=\frac{1}{6.7}-\frac{1}{7.8}\)
S= \(\frac{1}{1.2}-\frac{1}{7.8}=\frac{27}{56}\)
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)
\(=\frac{1}{1.2}-\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{56}\)
\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)
Tính các biểu thức sau
a,2/1x3x5+2/3x5x7+2/5x7x9+2/7x9x11
b,1/1x2x3+1/2x3x4+1/3x4x5+1/4x5x6
Tính nhanh các biểu thức sau:
a,2/1x3x5+2/3x5x7+2/5x7x9+2/7x9x11
b,1/1x2x3+1/2x3x4+1/3x4x5+1/4x5x6
A = \(\dfrac{2}{1\times3\times5}\) + \(\dfrac{2}{3\times5\times7}\) + \(\dfrac{2}{5\times7\times9}\)+\(\dfrac{2}{7\times9\times11}\)
A = \(\dfrac{1}{2}\) x (\(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) + \(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\))
A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+\(\dfrac{1}{5\times7}\)-\(\dfrac{1}{7\times9}\)+\(\dfrac{1}{7\times9}\)-\(\dfrac{1}{9\times11}\))
A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\) - \(\dfrac{1}{9\times11}\))
A = \(\dfrac{1}{2}\) x (\(\dfrac{1}{3}-\dfrac{1}{99}\))
A = \(\dfrac{1}{2}\times\) \(\dfrac{32}{99}\)
A = \(\dfrac{16}{99}\)
B = \(\dfrac{1}{1\times2\times3}\) + \(\dfrac{1}{2\times3\times4}\) + \(\dfrac{1}{3\times4\times5}\) + \(\dfrac{1}{4\times5\times6}\)
B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+\dfrac{2}{4\times5\times6}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1\times2}\)-\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{2\times3}\)-\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{3\times4}\)-\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{4\times5}\)-\(\dfrac{1}{5\times6}\))
B = \(\dfrac{1}{2}\)x(\(\dfrac{1}{1\times2}\) - \(\dfrac{1}{5\times6}\))
B = \(\dfrac{1}{2}\)x (\(\dfrac{1}{2}-\dfrac{1}{30}\))
B = \(\dfrac{1}{2}\)x \(\dfrac{7}{15}\)
B = \(\dfrac{7}{30}\)
A = 1x2 +2x3+3x4+........+99 x 100
B = 1x2x3 + 2x3x4 + 4x5x6 +...........+ 98 x99 x 100
tính A,B
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
Ta có:
\(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Leftrightarrow3A=99.100.101\Leftrightarrow A=\frac{99.100.101}{3}=333300\)
\(B=1.2.3+2.3.4+4.5.6+...+98.99.100\)
\(\Rightarrow4B=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+4.5.6.\left(7-3\right)+...+98.99.100.\left(101-97\right)\)
\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100\)
\(\Leftrightarrow4B=98.99.100.101\Leftrightarrow B=\frac{98.99.100.101}{4}=24497550\)
A= 1 x 2 + 2 x 3 + 3 x 4 +........+ 99 x 100
=> 2 + 6 + 12 +........+ 9900
=> 8 + 12 +.....+ 9900
=> 20 +....+ 9900
=> 20 + 20 + 30 +....+ 9900
=> 70 +....+ 9900
=> ( 9900 x 70 ) : 2
=> 693000 : 2
=> 346500
B = 1 x 2 x 3 + 2 x 3 x 4 +......+ 98 x 99 x100
=> ( 1 x 2 x 3) + ( 2 x 3 x 4 ) +....+ ( 98 x 99 x 100 )
= 6 + 24 +.......+ 970200
=> 28 + 120 +...+ 970200
=> ( 148 x 970200 ) : 2
=> 143589600 : 2
=> 71794900
Tính B= 1x2x3 + 2x3x4 + ... + (n-1)n(n+1)
Gấp nha
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
Rút gọn rồi quy đồng mẫu :
D=1x2x3+2x3x4+3x4x5+4x5x6/1x3x10+2x4x15+3x5x20+4x6x25
C=2010/2008x7+2024
1, a, Tính (2 cách)
A=1x2+2x3+3x4+....+nx(n+1)
b, Nêu cách tính tổng quát
c, áp dụng tính
B=1x2x3+2x3x4+....+(n-1)x(n+1)
giúp mình với đang cần gấp
a)
\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)
\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(3A=(1.2.3-0.1.2)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.5\right)+...+\left[n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\right]\)\(3A=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)
\(3A=n.\left(n+1\right).\left(n+2\right)\)
\(A=\dfrac{n.\left(n+1\right).\left(n+2\right)}{3}\)
c)
\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.4+3.4.5.4+...+\left(n-1\right).n.\left(n+2\right).4\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right).n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)\(4B=1.2.3.4+\left(2.3.4.5-1.2.3.4\right)+\left(3.4.5.6-2.3.4.5\right)+...+\left[\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right).\left(n-2\right)\right]\)\(4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\\ B=\dfrac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)