Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khổng Anh Hoàng
Xem chi tiết
Hoài Bii
Xem chi tiết
 βєsէ Ňαkɾσtɦ
18 tháng 6 2017 lúc 14:29

ta có : B = 1.2.3 + 2.3.4 + 3.4.5 + ...... + 2016.2017.2018

4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 2016.2017.2018.2019

4B = 2016.2017.2018.2019

vậy B = 2016.2017.2018.2019/4 

l҉o҉n҉g҉ d҉z҉
18 tháng 6 2017 lúc 14:28

Ta có : B = 1.2.3 + 2.3.4 + ...... + 2016.2017.2018

=> 4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 2016.2017.2018.2019

=> 4B = 2016.2017.2018.2019

=> B = 2016.2017.2018.2019/4

Vương Kiều Trang
Xem chi tiết
soyeon_Tiểu bàng giải
5 tháng 8 2016 lúc 21:51

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)

\(=\frac{1}{1.2}-\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{56}\)

\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)

Dấu . là nhân nha

Nguyễn Nhật Minh
5 tháng 8 2016 lúc 21:55

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)

.......................................

\(\frac{2}{6.7.8}=\frac{1}{6.7}-\frac{1}{7.8}\)

S= \(\frac{1}{1.2}-\frac{1}{7.8}=\frac{27}{56}\)

Edogawa Conan
6 tháng 8 2016 lúc 7:36

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)

\(=\frac{1}{1.2}-\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{56}\)

\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)

Trần Hải Đăng
Xem chi tiết
Trần Hải Đăng
Xem chi tiết

A = \(\dfrac{2}{1\times3\times5}\) + \(\dfrac{2}{3\times5\times7}\) + \(\dfrac{2}{5\times7\times9}\)+\(\dfrac{2}{7\times9\times11}\)

A = \(\dfrac{1}{2}\) x (\(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) + \(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\))

A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+\(\dfrac{1}{5\times7}\)-\(\dfrac{1}{7\times9}\)+\(\dfrac{1}{7\times9}\)-\(\dfrac{1}{9\times11}\))

A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\) - \(\dfrac{1}{9\times11}\))

A = \(\dfrac{1}{2}\) x (\(\dfrac{1}{3}-\dfrac{1}{99}\))

A = \(\dfrac{1}{2}\times\) \(\dfrac{32}{99}\)

A = \(\dfrac{16}{99}\)

B = \(\dfrac{1}{1\times2\times3}\) + \(\dfrac{1}{2\times3\times4}\) + \(\dfrac{1}{3\times4\times5}\) + \(\dfrac{1}{4\times5\times6}\)

B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+\dfrac{2}{4\times5\times6}\))

B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1\times2}\)-\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{2\times3}\)-\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{3\times4}\)-\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{4\times5}\)-\(\dfrac{1}{5\times6}\))

B = \(\dfrac{1}{2}\)x(\(\dfrac{1}{1\times2}\) - \(\dfrac{1}{5\times6}\))

B = \(\dfrac{1}{2}\)x (\(\dfrac{1}{2}-\dfrac{1}{30}\))

B = \(\dfrac{1}{2}\)\(\dfrac{7}{15}\)

B = \(\dfrac{7}{30}\)

harry
Xem chi tiết
Freya
17 tháng 8 2017 lúc 19:04

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300 

Trần Phúc
17 tháng 8 2017 lúc 19:10

Ta có:

\(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Leftrightarrow3A=99.100.101\Leftrightarrow A=\frac{99.100.101}{3}=333300\)

\(B=1.2.3+2.3.4+4.5.6+...+98.99.100\)

\(\Rightarrow4B=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+4.5.6.\left(7-3\right)+...+98.99.100.\left(101-97\right)\)

\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100\)

\(\Leftrightarrow4B=98.99.100.101\Leftrightarrow B=\frac{98.99.100.101}{4}=24497550\)

nguyễn minh ngọc
17 tháng 8 2017 lúc 19:15

A= 1 x 2 + 2 x 3 + 3 x 4 +........+ 99 x 100

=> 2 + 6 + 12 +........+ 9900

=> 8 + 12 +.....+ 9900

=> 20 +....+ 9900

=> 20 + 20 + 30 +....+ 9900

=> 70 +....+ 9900

=> ( 9900 x 70 ) : 2

=> 693000 : 2

=> 346500

B = 1 x 2 x 3 + 2 x 3 x 4 +......+ 98 x 99 x100

=> ( 1 x 2 x 3) + ( 2 x 3 x 4 ) +....+ ( 98 x 99 x 100 )

= 6 + 24 +.......+ 970200

=> 28 + 120 +...+ 970200

=> ( 148 x 970200 ) : 2

=> 143589600 : 2

=> 71794900

Đỗ Minh Hùng
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:17

ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương

Khách vãng lai đã xóa
Trần Lâm Oanh
Xem chi tiết
Phan Linh Ly
Xem chi tiết
Trần Ngọc Bích Vân
17 tháng 6 2017 lúc 9:21

a)

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)

\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3A=(1.2.3-0.1.2)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.5\right)+...+\left[n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\right]\)\(3A=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)

\(3A=n.\left(n+1\right).\left(n+2\right)\)

\(A=\dfrac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Trần Ngọc Bích Vân
17 tháng 6 2017 lúc 9:45

c)

\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.4+3.4.5.4+...+\left(n-1\right).n.\left(n+2\right).4\)

\(4B=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right).n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)\(4B=1.2.3.4+\left(2.3.4.5-1.2.3.4\right)+\left(3.4.5.6-2.3.4.5\right)+...+\left[\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right).\left(n-2\right)\right]\)\(4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\\ B=\dfrac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)