Cho tam giác ABC M là trung điểm của BC và MA=MB=MC. Chứng minh tam giác ABC vuông góc tại A
Cho tam giác ABC có M là trung điểm của BC và MB=MC=MA. Chứng minh rằng tam giác ABC vuông tại A
Ta có M là trung điểm BC và MB = MC = MA (đề bài)
=> AM là đường trung tuyến ứng với cạnh huyền BC và = 1/2 BC
Mà cái này chỉ có trong tam giác vuông
=> tam giác ABC vuông tại A
Cho tam giác ABC, M là trung điểm của BC và MA=MB=MC. Chứng minh rằng tam giác ABC là tam giác vuông
Ta có: \(\hept{\begin{cases}AM=MB=MC\\MB=\frac{1}{2}BC\left(MB+MC=BC;BM=MC\right)\end{cases}}\)
\(\Rightarrow AM=\frac{1}{2}BC\)
Xét \(\Delta ABC\) có:
\(AM=\frac{1}{2}BC\left(cmt\right)\)
\(\Rightarrow\Delta ABC\)vuông tại \(A\left(đpcm\right)\)
Cho tam giác ABC , đường trung tuyến BD và CE cắt tại G, biết BD=CE
a) Chứng minh AG vuông góc với BC
b) Cho M là một điểm nằm trong tam giác.
chứng minh : MA + MB + MC > AB + BC+ AC : 2
Bài 8. Cho tam giác ABC, M là trung điểm của BC và MA = MB = MC. Chứng minh rằng tam giác ABC vuông
M là trung điểm của BC
\(\Rightarrow MA=MB=\dfrac{1}{2}BC\)
Lại có: MA = MB = MC (GT)
\(\Rightarrow MC=\dfrac{1}{2}BC\)
Tam giác ABC có MC là đường trung tuyến và \(MC=\dfrac{1}{2}BC\)
=> Tam giác ABC vuông tại A
Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}\)
mà MA=MB(gt)
nên \(MA=\dfrac{BC}{2}\)
Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
\(AM=\dfrac{BC}{2}\)(cmt)
Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
Ai giúp mình với !!!
a) Cho tam giác ABC, kẻ AH vuông góc với BC, nối A với trung điểm M của BC. Biết góc BAH = góc HAM = góc MAC và AB<AC. Tính số đo các góc của tam giác ABC.
b) Chứng minh rằng tam giác ABC vuông tại A. M là trung điểm của BC. Chứng minh AM = MB = MC.
Cho tam giác ABC có M là trung điểm của BC và MB=MC=MA. Chứng minh rằng tam giác ABC vuông t
XétΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A
Cho tam giác ABC có M là trung điểm của BC và MB=MC=MA. Chứng minh rằng tam giác ABC vuông t
Xét ΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
Cho tam giác ABC có M là trung điểm của BC và MB=MC=MA. Chứng minh rằng tam giác ABC vuông t
Xét ΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
Cho tam giác ABC có M là trung điểm của BC và MB=MC=MA. Chứng minh rằng tam giác ABC vuông t
XétΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuông tại A