Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bé Duy
Xem chi tiết
Phạm Nguyễn Tất Đạt
28 tháng 12 2016 lúc 19:44

Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^{2008}=\left(\frac{b}{d}\right)^{2008}=\left(\frac{a-b}{c-d}\right)^{2008}=\frac{a^{2008}}{c^{2008}}=\frac{b^{2008}}{d^{2008}}=\frac{a^{2008}+b^{2008}}{c^{2008}+d^{2008}}\)

\(\Rightarrow\left(\frac{a-b}{c-d}\right)^{2008}=\frac{a^{2008}+b^{2008}}{c^{2008}+d^{2008}}\left(đpcm\right)\)

Bé Duy
Xem chi tiết
hyun mau
Xem chi tiết
Trần Thị Loan
8 tháng 3 2015 lúc 23:25

vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)

=>(a+b+c)(bc+ac+ab) - abc = 0

=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0

=> a2(b+c) +  (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0 

=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0

Nếu b+c = 0 => a = 2008

nếu a+ b = 0 => c = 2008

Nếu a+c = 0 => b = 2008

Vậy....

Trang Lee
19 tháng 3 2015 lúc 20:58

Trần Thị Loan : tại sao a+b+c = 2008  và 1/a+1/b+1/c = 1/2008 lại => 1/z+1/v+1/c = 1/(a+b+c) ????

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2008};a+b+c=2008\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ca+ac}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)=abc\)

\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Nếu \(a+b=0\Rightarrow c=2008\)

       \(b+c=0\Rightarrow a=2008\)

       \(c+a=0\Rightarrow b=2008\)

Vậy 1 trong ba số bằng 2008

Đoàn Thị Như Thảo
Xem chi tiết
Tụ
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Học tốt
15 tháng 11 2018 lúc 21:44

\(a^3+b^3+c^3=3abc\\ \left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Do \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Rightarrow a=b=c\)

=>P=20093

Narine Jane Fontine
Xem chi tiết
VICTORY_ Trần Thạch Thảo
1 tháng 4 2016 lúc 20:34

1003/1004

Trần Thanh Phương
1 tháng 4 2016 lúc 20:29

\(\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}=\frac{1003}{1004}\)

ai k mình mình k lại,ok

Thảo Ngân
1 tháng 4 2016 lúc 20:48

\(\frac{1003}{1004}\)

Thầy Cao Đô
Xem chi tiết
Đoàn Trần Quỳnh Hương
22 tháng 12 2022 lúc 16:02

loading...

Vũ Tiến Dũng
23 tháng 12 2022 lúc 13:54

loading...

Vũ Duy Hoàn
27 tháng 12 2022 lúc 8:36

loading...

Cuồng Song Joong Ki
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 8 2016 lúc 17:36

\(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)

\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)

Chứng minh A chia hết cho 2 : Nếu a,b,c là các số lẻ thì a4-1 , b4-1 , c4-1 là các số chẵn

=> A là số chẵn => A chia hết cho 2

Nếu a,b,c là các số chẵn thì dễ thấy A là số chẵn => A chia hết cho 2

Vậy A chia hết cho 2

Chứng minh A chia hết cho 5 :

Xét số tự nhiên n không chia hết cho 5 , chứng minh n4-1 chia hết cho 5

Ta có : \(n=5k\pm1,n=5k\pm2\)với k là số tự nhiên

\(n^2\)có một trong hai dạng \(n^2=5k+1\)hoặc \(n^2=5k+4\)

\(n^4\)có dạng duy nhất : \(n^4=5k+1\Rightarrow n^4-1⋮5\)

Áp dụng với n = a,b,c được A chia hết cho 5

Chứng minh A chia hết cho 3

Xét với n là số chính phương thì n2 chia 3 dư 0 hoặc 1

Do đó, nếu n2 chia 3 dư 0 thì dễ thấy A chia hết cho 3 với n = a,b,c

Nếu n2 chia 3 dư 1 thì n4 chia 3 dư 1 => n4-1 chia hết cho 3 => A chia hết cho 3 với n = a,b,c

Vậy n chia hết cho 2,3,5 mà (2,3,5) = 1 => A chia hết cho 30