Những câu hỏi liên quan
Thắng Nguyên
Xem chi tiết
Kiệt Nguyễn
28 tháng 8 2020 lúc 9:36

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
hhhhh
Xem chi tiết
Phương Tuyết
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
tth_new
7 tháng 5 2020 lúc 14:48

\(\Leftrightarrow\Sigma\sqrt{\frac{3a^3}{\left[5a^2+\left(b+c\right)^2\right]\left(a+b+c\right)}}\le1\)

Theo Am-GM: \(VT=\Sigma\sqrt{\frac{3a^2}{5a^2+\left(b+c\right)^2}.\frac{a}{a+b+c}}\le\Sigma\frac{3a^2}{2\left(5a^2+\left(b+c\right)^2\right)}+\frac{1}{2}\)

Như vậy nó là đủ để chứng minh rằng: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\)

Giả sử \(c=min\left\{a,b,c\right\}\) nó tương đương:

$$2\, \left( a-b \right) ^{2} \left( 3\,c+a+b \right)  \left( -c+a+b
 \right)  \left( {a}^{2}+2\,ab+{b}^{2}+5\,{c}^{2} \right) +2\,c
 \left( a-c \right)  \left( b-c \right)  \left( 3\,{a}^{3}+9\,{a}^{2}b
+17\,c{a}^{2}+9\,a{b}^{2}-20\,abc+3\,{c}^{2}a+3\,{b}^{3}+17\,c{b}^{2}+
3\,{c}^{2}b+{c}^{3} \right)  \geqq 0$$

(Gõ Latex, không hiện thì vô thống kê hỏi đáp xem)

Đây là điều hiển nhiên/

PS: Bài này quan trọng là ý tưởng phá căn thôi chứ không có gì khó. Lúc đầu UCT bất đẳng thức cuối cho đẹp nhưng phải xét các TH mệt lắm, chưa rành nên không làm cách đó:D

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
7 tháng 5 2020 lúc 15:07

Chứng minh: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\), cách 2:

Đổi biến sang pqr: (Vô thống kê hỏi đáp xem nếu olm không hiện Latex)

Nếu \(p^2\le4q\) ta cần:

$$2/9\,p \left( 19\,{p}^{2}-36\,q \right)  \left( {p}^{3}-4\,qp+9\,r
 \right) -4/9\, \left( {p}^{2}-3\,q \right)  \left( {p}^{2}-4\,q
 \right)  \left( 5\,{p}^{2}-3\,q \right) \geqq 0$$

(Hiển nhiên)

Nếu \(p^2\ge4q\) thì cần chứng minh:

$$2\,p \left( 19\,{p}^{2}-36\,q \right) r+2\, \left( {p}^{2}-4\,q
 \right)  \left( {p}^{4}-2\,{q}^{2} \right)  \geqq 0$$

(Hiển nhiên)

Từ 2 TH trên ta thu được điều phải chứng minh.

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
7 tháng 5 2020 lúc 20:34

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\le\sqrt{\left(a+b+c\right)\left[\frac{a^2}{5a^2+\left(b+c\right)^2}+\frac{b^2}{5b^2+\left(a+c\right)^2}+\frac{c^2}{5c^2+\left(a+b\right)^2}\right]}\)

Ta sẽ chứng minh \(\frac{a^2}{5a^2+\left(b+c\right)^2}+\frac{b^2}{5b^2+\left(a+c\right)^2}+\frac{c^2}{5c^2\left(a+b\right)^2}\le\frac{1}{3}\)

Lại áp dụng Cauchy-Schwazr ta được

\( {\displaystyle \displaystyle \sum } \)\(\frac{\left(3a\right)^2}{a^2+b^2+c^2+4a^2+2bc}\le\)\( {\displaystyle \displaystyle \sum }\)\(\left(\frac{a^2}{a^2+b^2+c^2}+\frac{a^2}{2a^2+bc}+\frac{a^2}{2a^2+bc}\right)=\)\( {\displaystyle \displaystyle \sum }\)\(\frac{a^2}{a^2+b^2+c^2}+\)\( {\displaystyle \displaystyle \sum }\)\(\frac{2a^2}{2a^2+bc}\)

Do đó:

\( {\displaystyle \displaystyle \sum }\)\(\frac{a^2}{5a^2+\left(b+c\right)^2}\le\frac{1}{9}(\)\( {\displaystyle \displaystyle \sum }\)\(\frac{a^2}{a^2+b^2+c^2}+\)\( {\displaystyle \displaystyle \sum }\)\(\frac{2a^2}{2a^2+bc})\)=\(\frac{1}{9}(1+\)\( {\displaystyle \displaystyle \sum }\)\(\frac{2a^2}{2a^2+bc}\)

Bây giờ ta chỉ cần chứng minh được

\(\frac{1}{9}\)(1+\( {\displaystyle \displaystyle \sum }\)\(\frac{2a^2}{2a^2+bc}\))\(\le\frac{1}{3}\)

BĐT này tương đương với mỗi BĐT sau: 

1+\( {\displaystyle \displaystyle \sum }\)\(\frac{2a^2}{2a^2+bc}\le\frac{1}{3}\)

4-\( {\displaystyle \displaystyle \sum }\)\(\frac{bc}{2a^2+bc}\le3\)

\( {\displaystyle \displaystyle \sum }\)\(\frac{bc}{2a^2+bc}\ge1\)

BĐT cuối cùng đúng vì theo Cauchy-Schwarz thì 

\( {\displaystyle \displaystyle \sum }\)\(\frac{bc}{2a^2+bc}=\)\( {\displaystyle \displaystyle \sum }\)\(\frac{b^2c^2}{2a^2bc+b^2c^2}\ge\)\((ab+bc+ca)^2 \over {\displaystyle \displaystyle \sum }a^2b^2+2bc(a+b+c)\)=1

Dấu "=" xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thanh Hiền
Xem chi tiết
Nguyễn Anh Tuấn
Xem chi tiết
vu duc thanh
8 tháng 7 2016 lúc 22:36

bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi  hoặc bdt holder  ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\)  câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .

Bình luận (0)
Thắng Nguyễn
9 tháng 7 2016 lúc 8:37

Bài 1:Đặt VT=A

Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)

Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Tương tự với 2 cái còn lại

\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)

\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)

Đẳng thức xảy ra khi a=b=c 

Bài 2:

Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)

Dự đoán điểm rơi xảy ra khi a=b=c=1

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

Tương tự suy ra

\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)

Bình luận (0)
Nguyễn Trung Hiếu
Xem chi tiết
Thắng Nguyễn
8 tháng 2 2017 lúc 18:37

Áp dụng C-S

\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

Bình luận (0)
Trần Quốc Đạt
9 tháng 2 2017 lúc 6:03

b) chính là USAMO 2004. Đây là lời giải cung cấp bởi "http://www.artofproblemsolving.com/wiki/index.php/2004_USAMO_Problems/Problem_5"

Ta chứng minh được \(x^5+1\ge x^3+x^2\) suy ra \(x^5-x^2+3\ge x^3+2\).

Ta chỉ cần CM được \(\left(a^3+1+1\right)\left(1+b^3+1\right)\left(1+1+c^3\right)\ge\left(a+b+c\right)^3\)

Nhưng đây chính là BĐT Holder cho 3 bộ số mỗi bộ 3 số.

Bình luận (0)
Hày Cưi
Xem chi tiết