giải phương trình:x\(^2\)+2x+2|x+1|-2=0
câu 1:
1)giải phương trình:x(3+x)=4
2)giải hệ phương trình:\(\left\{{}\begin{matrix}2x-3y-1=0\\\dfrac{x}{2}=\dfrac{2y+1}{3}\end{matrix}\right.\)
1: =>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
2: =>2x-3y=1 và 3x=4y+2
=>2x-3y=1 và 3x-4y=2
=>x=2 và y=1
giải bất phương trình:x+2/3-1>=2x+x/2
\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)
\(\Leftrightarrow6x-2\ge15x\)
\(\Leftrightarrow x\le-\frac{2}{9}\)
Vậy \(x\le-\frac{2}{9}\)
giải phương trình:x^4+(x^2+1)*căn x^2+1-1=0
TA CÓ : \(x^4+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)
ĐẶT \(\sqrt{x^2+1}=y\left(y>0\right)\)
\(\Rightarrow x^4=\left(y^2-1\right)^2\)
Từ Đó Ta Có pt mới : \(\left(y^2-1\right)^2+y^3-1=0\left(y>0\right)\)
\(\Rightarrow y^4+y^3-2y^2=0\)
\(\Rightarrow y^2\left(y^2+y-2\right)=0\)
\(\Rightarrow y^2\left(y-1\right)\left(y+2\right)=0\)
\(\Rightarrow y=1\left(y>0\Rightarrow y\notin\left(-2;0\right)\right)\)
\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x=0\)
VẬY PT trên có nghiệm duy nhất X = 0
\(x^5+x^4+x^3+x^2+x=0\)
⇔\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)=0\)
⇔\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
⇔\(\left(x+1\right)\left(x^4+x^2+1\right)=0\)
⇔ \(\left[{}\begin{matrix}x+1=0\\x^4+x^2+1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x\in\varnothing\end{matrix}\right.\)
giải phương trình:x^4+2x^3+5x^2+4x-12 = 0
Giair phương trình:x^3+2x^2+2x+1=0
Ta có \(\left(x+1\right)\left(x^2+x+1\right)=0\)=>\(\orbr{\begin{cases}x+1=0\\x^2+x+1=0\end{cases}}\)Mà x^2+x+1>=0 với mọi x =>x=-1
\(x^3+2x^2+2x+1=0\)
\(\Leftrightarrow\left(x^3+1\right)+\left(2x^2+2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow x+1=0\Leftrightarrow x=-1\)
a)Giải phương trình:
(x^2+x)^2-(x^2+x)-2=0
b)Giải phương trình:
x+3/x-4 +3=6/1-x
a)Giải phương trình:
(x^2+x)^2-(x^2+x)-2=0
b)Giải phương trình:
x+3/x-4 +3=6/1-x
a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0
=>(x^2+x-2)(x^2+x+1)=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: ĐKXĐ: x<>4; x<>1
PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)
=>(4x-9)(1-x)=6(x-4)
=>4x-4x^2-9+9x=6x-24
=>-4x^2+13x-9-6x+24=0
=>-4x^2+7x+15=0
=>x=3(nhận) hoặc x=-5/4(nhận)
giải hệ phương trình:
x y ( 4 x y + y + 4 ) = y 2 ( 2 y + 5 ) − 1
2 x y ( x − 2 y ) + x − 14 y = 0